Skip to main content

Combating Antibiotic Resistance

Written on |

Discovery may contribute to new treatments for infectious diseases.

A new TAU study revealed a mechanism through which “good” viruses can attack the systems of “bad” bacteria, destroy them and block their reproduction.

“Good” Viruses Kill “Bad” Bacteria

The researchers demonstrated that the “good” virus (bacteriophage) is able to block the replication mechanism of the bacteria’s DNA without damaging its own, noting that the ability to distinguish between oneself and others is crucial in nature. The discovery reveals one more fascinating aspect of the mutual relations between bacteria and bacteriophages and may lead to a better understanding of bacterial mechanisms for evading bacteriophages, as well as ways for using bacteriophages to combat bacteria. The study, published recently in PNAS – Proceedings of the National Academy of Sciences, was led by Prof. Udi Qimron, Dr. Dor Salomon, Dr. Tridib Mahata and Shahar Molshanski-Mor of the Sackler Faculty of Medicine. Other participants included Prof. Tal Pupko, Head of The Shmunis School of Biomedicine and Cancer Research and also of TAU’s new AI and Data Science Center; Dr. Oren Avram of The George S. Wise Faculty of Life Sciences; and Dr. Ido Yosef, Dr. Moran Goren, Dr. Miriam Kohen-Manor and Dr. Biswanath Jana of the Sackler Faculty of Medicine.

A Great Scientific Challenge

Prof. Qimron explains that the antibiotic resistance of bacteria is one of the greatest challenges faced by scientists today. One potential solution may lie in further investigation of the targeted eradication of bacteria by “good” bacteriophages; namely, understanding bacteriophage mechanisms for taking over bacteria as a basis for the development of new tools to combat bacterial pathogens. With this solution in mind, the current study unveiled the mechanism by which the bacteriophage takes control of the bacteria. The researchers found that a bacteriophage protein uses a DNA-repair protein in the bacteria to “cunningly” cut the bacteria’s DNA as it is being repaired. Since the bacteriophage’s own DNA has no need for this specific repair protein, it is protected from this nicking procedure. In this way the “good” bacteriophage does three important things: it distinguishes between its own DNA and that of the bacteria, destroys the bacteria’s genetic material, and blocks the bacteria’s propagation and cell division. The process by which the bacteriophage destroys the bacteria’s genetic material Prof. Qimron explains that, “The ability to distinguish between oneself and others is of enormous importance in nature and in various biological applications. All antibiotic mechanisms identify and neutralize bacteria only, with minimal effect on human cells.” The researchers discovered the process by searching for types of bacterial variants not impacted by this bacteriophage mechanism – those that have developed “immunity” to it. This inquiry led them to the specific bacterial mechanisms affected by the bacteriophage takeover. “Shedding more light on the ways in which bacteriophages attack bacteria, our findings may serve as a tool in the endless battle against antibiotic-resistant bacteria,” concludes Prof. Qimron. Featured image: Illustrative: Bacteriophage or phage virus attacking and infecting a bacterium

Related posts

Is There a Way to Stop Parkinson’s Disease at Its Source?

14 November 2024

How Does the Brain Keep Calm?

14 November 2024

Hyperbaric Oxygen Therapy: A Promising Treatment for PTSD Symptoms

11 November 2024

TAU Breakthrough Reveals Mechanism That Eliminates Tumors

3 November 2024

Could Cancer Vulnerabilities Be Hidden in Chromosome Changes?

23 September 2024

Spotting Parkinson’s Early: A New TAU Breakthrough

17 September 2024

How Can We See Through Closed Eyes?

16 September 2024

Can Parkinson’s Treatment be Enhanced by AI Tech?

1 September 2024

Want to Fall in Love? Step Outside in The Sun

19 August 2024

Can Smartwatches Prevent Pandemic Outbreaks?

7 August 2024

How Close Are We to Thought-Based Communication?

22 July 2024

Will Wearable Tech Transform Neurological Diagnosis?

21 July 2024

Will Existing Drugs Stop Cancer’s Bone Spread?

19 May 2024

Heart Disease’s Cancer Link Unveiled

14 April 2024

Do Green Environments Help Heart Patients Live Longer?

4 April 2024

TAU Receives $12.67M Grant for Medical Simulation Center

1 April 2024

Victoria

Tok Corporate Centre, Level 1,
459 Toorak Road, Toorak VIC 3142
Phone: +61 3 9296 2065
Email: [email protected]

New South Wales

Level 22, Westfield Tower 2, 101 Grafton Street, Bondi Junction NSW 2022
Phone: +61 418 465 556
Email: [email protected]

Western Australia

P O Box 36, Claremont,
WA  6010
Phone: :+61 411 223 550
Email: [email protected]