Skip to main content

Antibacterial fillings from TAU may combat recurring tooth decay

Written on |

New material may prevent one of the costliest and most prevalent bacterial diseases in the world

Tooth decay is among the costliest and most widespread bacterial diseases. Virulent bacteria cause the acidification of tooth enamel and dentin, which, in turn, causes secondary tooth decay.

A new study by Tel Aviv University researchers finds potent antibacterial capabilities in novel dental restoratives, or filling materials. According to the research, the resin-based composites, with the addition of antibacterial nano-assemblies, can hinder bacterial growth and viability on dental restorations, the main cause of recurrent cavities, which can eventually lead to root canal treatment and tooth extractions.

 

Research for the study was led by Dr. Lihi Adler-Abramovich and TAU doctoral student Lee Schnaider in collaboration with Prof. Ehud Gazit, Prof. Rafi Pilo, Prof. Tamar Brosh, Dr. Rachel Sarig and colleagues from TAU’s Maurice and Gabriela Goldschleger School of Dental Medicine and George S. Wise Faculty of Life Sciences. It was published in ACS Applied Materials & Interfaces on May 28.

 

Can your fillings fight germ?


“Antibiotic resistance is now one of the most pressing healthcare problems facing society, and the development of novel antimicrobial therapeutics and biomedical materials represents an urgent unmet need,” says Dr. Adler-Abramovich. “When bacteria accumulate on the tooth surface, they ultimately dissolve the hard tissues of the teeth. Recurrent cavities — also known as secondary tooth decay — at the margins of dental restorations results from acid production by cavity-causing bacteria that reside in the restoration-tooth interface.”

 

This disease is a major causative factor for dental restorative material failure and affects an estimated 100 million patients a year, at an estimated cost of over $30 billion.

 

Historically, amalgam fillings composed of metal alloys were used for dental restorations and had some antibacterial effect. But due to the alloys’ bold color, the potential toxicity of mercury and the lack of adhesion to the tooth, new restorative materials based on composite resins became the preferable choice of treatment. Unfortunately, the lack of an antimicrobial property remained a major drawback to their use.

 

“We’ve developed an enhanced material that is not only aesthetically pleasing and mechanically rigid but is also intrinsically antibacterial due to the incorporation of antibacterial nano-assemblies,” Schnaider says. “Resin composite fillings that display bacterial inhibitory activity have the potential to substantially hinder the development of this widespread oral disease.”

 

From nano materials to major breakthroughs


The scientists are the first to discover the potent antibacterial activity of the self-assembling building block Fmoc-pentafluoro-L-phenylalanine, which comprises both functional and structural subparts. Once the researchers established the antibacterial capabilities of this building block, they developed methods for incorporating the nano-assemblies within dental composite restoratives. Finally, they evaluated the antibacterial capabilities of composite restoratives incorporated with nanostructures as well as their biocompatibility, mechanical strength and optical properties.

 

“This work is a good example of the ways in which biophysical nanoscale characteristics affect the development of an enhanced biomedical material on a much larger scale,” Schnaider says.

 

“The minimal nature of the antibacterial building block, along with its high purity, low cost, ease of embedment within resin-based materials and biocompatibility, allows for the easy scale-up of this approach toward the development of clinically available enhanced antibacterial resin composite restoratives,” Dr. Adler-Abramovich says.

 
The researchers are now evaluating the antibacterial capabilities of additional minimal self-assembling building blocks and developing methods for their incorporation into various biomedical materials, such as wound dressings and tissue scaffolds.

Related posts

Is Treatment for Genetic Autism on the Horizon?

25 November 2024

Nasal Spray Revolutionizes COVID Protection

21 November 2024

Is There a Way to Stop Parkinson’s Disease at Its Source?

14 November 2024

How Does the Brain Keep Calm?

14 November 2024

Hyperbaric Oxygen Therapy: A Promising Treatment for PTSD Symptoms

11 November 2024

TAU Breakthrough Reveals Mechanism That Eliminates Tumors

3 November 2024

Could Cancer Vulnerabilities Be Hidden in Chromosome Changes?

23 September 2024

Spotting Parkinson’s Early: A New TAU Breakthrough

17 September 2024

How Can We See Through Closed Eyes?

16 September 2024

Can Parkinson’s Treatment be Enhanced by AI Tech?

1 September 2024

Want to Fall in Love? Step Outside in The Sun

19 August 2024

Can Smartwatches Prevent Pandemic Outbreaks?

7 August 2024

How Close Are We to Thought-Based Communication?

22 July 2024

Will Wearable Tech Transform Neurological Diagnosis?

21 July 2024

Will Existing Drugs Stop Cancer’s Bone Spread?

19 May 2024

Heart Disease’s Cancer Link Unveiled

14 April 2024

Victoria

Tok Corporate Centre, Level 1,
459 Toorak Road, Toorak VIC 3142
Phone: +61 3 9296 2065
Email: [email protected]

New South Wales

Level 22, Westfield Tower 2, 101 Grafton Street, Bondi Junction NSW 2022
Phone: +61 418 465 556
Email: [email protected]

Western Australia

P O Box 36, Claremont,
WA  6010
Phone: :+61 411 223 550
Email: [email protected]