Skip to main content

Author: AUFTAU

Rising Temperatures Fuel Increase in Violence: TAU Study

Findings demonstrate first direct link between climate change and criminal behavior.

Rising temperatures increase the likelihood of violent crimes, according to a new study led by Tel Aviv University‘s Dr. Ram Fishman of TAU’s Department of Public Policy, Gershon H. Gordon Faculty of Social Sciences

The novel findings indicate that for every 1-degree Celsius rise over the average daily temperature, the rate of violent crime spikes by one percent. The victims are generally ethnic and religious minorities, women, and political rivals.

The study is the first of its kind to link the day-to-day relationship between weather changes and criminal trends in the developing world.  

​“This is a glaring warning sign of the devastating and worrying consequences of the global climate crisis,” said Fishman, who conducted the study with partners from the UAE, India and the US. “These consequences are already here with us and are gnawing at the very foundations of social and human existence.” 

Dr. Ram Fishman (Photo: Noga Shahar)

In the context of the study, Fishman examined a representative state in India with a crime rate similar to the national average. Results from parallel studies in other countries yielded similar results according to Fishman, Head of the Sustainable Development Lab at TAU’s Boris Mints Institute for Strategic Policy Solutions to Global Challenges. He explained that the analysis performed in India can be tailored to other locations, where he expects similar results.   

The team gained unprecedented access to troves of crime records from 600 police stations in Karnataka, India. The “big data” sets included the exact date, location and type of crime reported over a six-year period. Using advanced statistical analysis methods, the researchers compared crime data to daily and seasonal weather conditions. In this way, they discovered the correlation between weather and crime at a level more accurate than previously possible. 

The researchers pointed to higher temperatures causing increased aggression as one likely factor driving this phenomenon. Further demonstrating the link between heat and higher day-to-day violent crime, the findings showed that non-violent property crimes were largely unaffected by daily weather. Fishman and team added that severe heat can cause lower agricultural yields, leading to higher unemployment rates and increased economic hardship. However, these economic motives were primarily associated with increased crime rates over time—not on a daily level. The study’s authors note that previous research in developing countries was limited. Population in these regions typically face relatively higher temperatures and are less able to shield themselves from these conditions. 

Their findings are in the December 2021 peer-reviewed issue of the Journal of Economic Behavior and Organization

Medicinal Cannabis Oil Effective for Treating Autism

Treatment improves both behavioral and biochemical parameters of the disease.

Autism is a neurodevelopmental disease, and its main symptoms are social deficiencies and compulsive behaviors. Cases range from mild to severe, and causes are both genetic and environmental. Researchers at Tel Aviv University have successfully treated autism in animal models with medical cannabis oil, improving behavioral and biochemical parameters.

Advancing in Reverse Order

In about 1% of all autism cases, a mutation in a single gene, called Shank3, is associated. While testing of medicinal cannabis traditionally begins with humans, in the current study PhD student Shani Poleg and Prof. Daniel Offen of TAU’s Sackler Faculty of Medicine, Felsenstein Medical Research Center and Sagol School of Neuroscience used animal models with a mutation in Shank3 to test the effectiveness of cannabis oil for alleviating symptoms of autism. The results of the surprising study were published in Translational Psychology published by Nature.

“We saw that cannabis oil has a favorable effect on compulsive and anxious behaviors in model animals,” says Shani Poleg. “According to the prevailing theory, autism involves over arousal of the brain which causes compulsive behavior. In the lab, in addition to the behavioral results, we saw a significant decrease in the concentration of the arousing neurotransmitter glutamate in the spinal fluid – which can explain the reduction in behavioral symptoms.”

A Little Euphoria Makes All the Difference

Attempting to determine which components of cannabis oil alleviate symptoms of autism, the researchers found that THC, the main psychoactive compound in cannabis which is responsible for the euphoric sensation associated with its use, is effective in treating autism, possibly even in small quantities.

“Clinical trials testing cannabis treatments for autism usually involve strains containing very large amounts of CBD – due to this substance’s anti-inflammatory properties, and because it does not produce a sense of euphoria,” explains Poleg. “Moreover, the strains used for treating autism usually contain very little THC, due to apprehension regarding both the euphoria and possible long-term effects.”

“In the second stage of our study we inquired which active substance in cannabis causes the behavioral improvement, and were surprised to discover that treatment with cannabis oil that contains THC but does not contain CBD produces equal or even better effects – both behavioral and biochemical. Moreover, our results suggest that CBD alone has no impact on the behavior of model animals.”

Addressing Existing Misinformation

Prof. Daniel Offen says, “Since cannabis is not defined as a medication, trials have already been conducted in children and adolescents with autism – without any preliminary studies addressing issues like the effect of cannabis on biochemical processes in the brain, spinal fluid or blood, and who can benefit from which type of cannabis oil. There is a great deal of misinformation on the subject of medicinal cannabis and autism, and Shani Peleg’s doctoral project represents pioneering basic research with regard to treating autism with cannabis oil.”

“This is an initial study,” concludes Poleg. “But we hope that through our basic research we will be able to improve clinical treatments. Our study shows that when treating autism with medicinal cannabis oil there is no need for high contents of either CBD or THC. We observed significant improvement in behavioral tests following treatments with cannabis oil containing small amounts of THC and observed no long-term effects in cognitive or emotional tests conducted a month and a half after the treatment began.”

TAU Students Racing Towards a Greener Campus

As part of Tel Aviv University’s initiative to reduce its environmental footprint to help combat the global climate crisis, the Entrepreneurship Center rallied 73 students to the cause and held a hackathon aimed at generating innovative solutions for a greener and more sustainable campus. The event was organized in cooperation with Shlomo Meltzer Institute for Smart Transportation and TAU’s Student Union.

Students were challenged to come up with practical solutions to one out of two central issues for cutting down pollution and waste: reducing the daily car traffic to campus and encouraging the use of reusable dishware on campus.

Fifteen experts mentored the students throughout the competition, which also featured professional enrichment and industry insider lectures on how organizations are addressing environmental challenges today.

Vehicular Pollution Challenge Winners

First Place: TAUapt

The winning team worked under the assumption that most TAU students residing in Tel Aviv rely on public transportation and therefore, do not use a car. What could encourage more of this behavior?

By enabling more students to live in Tel Aviv, the number of vehicles commuting to campus could further decrease. The team conceptualized a house hunting app, similar in nature to the existing job hunting platform AllJobs – but for apartments – which sends its subscribers instant messages through WhatsApp about apartments that are vacating. Team members: Abedallah Barghouti and Ubaydah Wattad.    

 

The TAUapt Team receives the prize for winning the competition’s Vehicular Pollution Challenge

Second Place: BIVPIsrael

The team suggested that the main difficulty for drivers of electric bicycles and scooters is the need to carry around a helmet and battery throughout the day. The team proposed a solution for storage compartments in which both helmet and battery can be left, and the latter can be charged, using solar-generated electricity, while the vehicle remains locked nearby.

Third Place: The Hitchhikers

The team proposed a way to encourage carpooling to campus by offering benefits to students and faculty members. They decided to appeal to people’s pockets – not their ideology.

Reusable Dishware Challenge Winners

First Place: Tengo

To cut down waste from single-use plastics, the Tengo team proposed a collaborative circular model based on the use of reusable dishware marked with a barcode. The reusable dishware is returned to collection boxes after use, where the users are credited. The dishware then gets   transported, cleaned and distributed back to campus restaurants. Team members: Chen Agassi, Idan Stark, Roi Farjun and Tali Aknin.

The Tengo Team receives the prize for winning the competition’s Reusable Dishware Challenge

Second Place: Go Clean Go Green

The team proposed a platform to incentivize the use of reusable dishware by awarding store credits for popular retailers. Through barcode-scanning technology on reusable cups and more, one earns redeemable points with every swipe.  

Third Place: TAUBIS

A game app that ranks businesses according to their degree of eco-friendliness. Students enjoy services similar to food delivery platforms like UberEats, Wolt or 10bis, accumulation of financial and ecological points.

Yair Sakov, Head of TAU’s Entrepreneurship Center: “Sustainability and the circular economy are key issues promoted by the Entrepreneurship Center; there is no field more important than this to initiate and flood innovation.”

The Competition’s Judges

The judges in the competition included Knesset Member Prof. Alon Tal, former Head of Tel Aviv University’s Department of Public Policy; Miki Haimovich, Chairperson of the Heschel Center for Sustainability; Asi Schmelzer, Chairman of the Shlomo Group; Yuval Shani, VP of Technology and Innovation at Shlomo Group; Lior Hazan, Chairperson of TAU’s Student Union; Prof. Colin Price, Head of TAU’s Department of Environmental Studies; Prof. Hadas Maman, Head of the Environmental Engineering Program at TAU’s Faculty of Engineering; Dr. Ilit Oppenheim, Director at Shlomo Schmelzer Institute for Smart Transportation; Orlie Gruper, General Partner in Mobilitech Capital; Shani Raved, Global Operations Strategy Lead and Product Manager at Lime.  

TAU and Goethe University Establish Joint Center for Interfaith Studies

First-of-its-kind academic collaboration between Israel and Germany.

Academic collaboration between Israel and Germany is growing, and for the first time, Tel Aviv University in Israel and Goethe University in Frankfurt will establish a joint center. With a focus on interfaith studies, the center will promote research on religion, in particular the monotheistic faiths – a field in which both institutions specialize. The two universities will conduct joint research, hold academic conferences, and train students and researchers in this field.

The agreement for launching the new center was signed during a dedicated “Germany Week” organized at TAU by TAU International and the Student Union of Tel Aviv University, the first is a series of international events led by TAU International and the TAU Student Union, promoting internationality and a global campus by focusing on the cultures of different countries and bringing them to the TAU community.

The signing was attended by the German Ambassador to Israel Susanne Wasum-Rainer, TAU President Prof. Ariel Porat, and the President of Goethe University, Prof. Enrico Schleiff.

“Tel Aviv university has a wide network of collaboration with German universities, more than with any other country in Europe,” says Prof. Milette Shamir, TAU’s VP in charge of international academic collaboration. 

“This collaboration includes hundreds of joint research projects as well as hundreds of German students who come to our campus each year. The joint center expands this collaboration in an important new direction and tightens our existing partnership with Goethe University Frankfurt, one of the leading universities in Germany. We hope that in the near future the two universities will expand collaboration to several other areas of common strength.”

 

German TAU Students celebrating the International “Germany Week” on Tel Aviv University campus (Photo: Raphael Ben-Menashe)

The Start of an Even Closer Cooperation

Prof. Menachem Fisch, who heads the initiative at TAU says, “I am thrilled to be part of the establishment of a unique, first-of-its-kind center for the study of the monotheistic faiths and their mutual development. This is a worthy initiative, and one more building block in the academic collaboration between the two countries.”

Prof. Enrico Schleiff, President of Goethe University notes that, ”What we are agreeing upon today is, as far as I am aware, unprecedented – at least in the humanities in Germany.” 

“It is not merely a formal cooperation between a German and an Israeli university, but rather the development of a highly visible, joint institutionalized international research center. The center is cross-departmental on both sides and working in an area of study that is most relevant to the German and the Israeli society alike: the history of and the present challenges in religious diversity, difference and conflict in pluralistic societies. It will focus on questions regarding inter-religious dialogue, religious fundamentalism and conflict, but also on the rich cultural heritage and the potential inherent in religious traditions. This center is the start of an even closer cooperation.”

Susanne Wasum-Rainer, Germany’s Ambassador to Israel says, “Academic exchange and cooperation is not only a constitutive pillar of German-Israeli relations. It is also a contribution to strengthening research and scientific progress as a global endeavor, in science as well as in the humanities. By declaring their will to establish a joint Center for the Study of Religious and Interreligious Dynamics, the Goethe University Frankfurt am Main and the Tel Aviv University address one of the urgent questions of our time, the role of religious communities in a changing and conflictual world.

“This MOU marks a new milestone in the special relationship between the two universities and is also another bridge of understanding between Frankfurt and Tel Aviv. The new center will for sure contribute to a better inter-religious dialogue from different angles and perspectives,” concludes Uwe Becker, President of the German Friends Association of Tel Aviv University

Parent Smartphone Use Could Harm Child Development

Mothers devote only 25% of their attention to toddlers when distracted, consequences can be far-reaching.

A new study from Tel Aviv University found that mothers devote only 25% of their attention to their toddlers while using smartphones, a practice which may impair child development. The researchers believe the findings are applicable to fathers as well.

To conduct the study, researchers monitored dozens of mothers who were asked to perform three tasks alongside their toddlers, aged two to three: Browse a specific Facebook page and like videos and articles that interest them; read printed magazines and mark articles that interest them; and finally, play with the child while the smartphone and magazines were outside the room (uninterrupted free play).

The goal was to simulate situations in real life where the mother has to take care of her child, while at the same time devoting some of her attention to her smartphone. To encourage natural behavior, the mothers were unaware of the purpose of the experiment when browsing a smartphone or reading a printed magazine compared to periods of uninterrupted free play.

The results of the new study, which was led by Dr. Katy Borodkin of the Department of Communication Disorders at The Stanley Steyer School of Health Professions, Sackler Faculty of Medicine of Tel Aviv University, were published in the top-tier Journal of Child Development.

When Mom Reads a Really Good Post

“The mothers talked up to four times less with their children while they were on their smartphones,” said Dr. Borodkin. Not only did they exchange fewer conversational turns with the toddler, the quality of the interactions was also poorer, as the mothers provided less immediate and content-tailored responses, and more often ignored explicit child bids. “Even when they were able to respond while browsing Facebook, the quality of the response was reduced – the mothers kept their responsiveness to a bare minimum to avoid a complete breakdown in communication with the toddler.”

While the researchers did not find that one medium distracted the mothers more than the other between smartphones and magazines, Borodkin noted that: “It is clear that we use smartphones much more than any other media, so they pose a significant developmental threat.

While the study focused on the mothers, the researchers believe the findings characterize communication interferences between fathers and their toddlers as well, since the smartphone usage patterns are similar between men and women.

WATCH: Dr. Katy Borodkin explains how extensive use of smartphones by parents might damage toddlers’ development

Parents, Put Your Phones Away! 

As the mothers performed the tasks, the researchers assessed three components of mother-child interaction: They first examined maternal linguistic input, the spoken content that the mother conveys to the child, regarded as an important predictor of a child’s speech development. Previous studies revealed that reduced linguistic input leads to decreased vocabulary in children, a shortcoming that may extend to adulthood.

Next, the researchers examined how interactive the discourse was. Known as “conversational turns,” the back-and-forth discourse between parent and child is a predictor of language and social development, as the child learns that he or she has something to contribute to the interaction as well as the basic social norms of social interactions.

Finally, maternal responsiveness was examined through the extent the mother responded to their child’s speech. This was measured by the immediacy of the response and its contingency on what the child said. For example, when the child says “look, a truck”, there is no comparison between a response such as “yes, that’s great” and a response such as “correct, this is a red truck, like the one we saw yesterday”. This measure is the basis for almost every aspect of child development: linguistic, social, emotional, and cognitive.

“We currently have no evidence suggesting an actual effect on child development related to the parental use of smartphones, as this is a relatively new phenomenon. However, our findings indicate an adverse impact on the foundation of child development. The consequences of inadequate mother-child interaction can be far-reaching.”

Breakthrough TAU Discovery Key to Reversing ALS

Findings may lead to ways to delay, or even roll back, the course of the fatal disease in its early stages.

A Tel Aviv University-led research team has uncovered a core mechanism that causes ALS and has succeeded in reversing its effects. While the root cause of ALS remains unknown, the discovery reveals the basic biological mechanism that leads to nerve destruction in the early stages of the incurable disease that afflicts an estimated one out of every 400 people. 

To date, there is no effective treatment to prevent or halt disease progression. The average life expectancy of ALS patients is approximately three years from diagnosis. “This discovery can lead to the development of new therapies that could enable nerve cells to heal before irreversible damage occurs in the spinal cord,” said lead investigator Prof. Eran Perlson of the Sackler Faculty of Medicine and the Sagol School of Neuroscience at TAU. 

New Tool for Combating the Disease 

The team discovered that an abnormal buildup of a protein called TDP-43 in neuromuscular junctions, which translate brain signals into physical movements, leads to the degeneration and death of nerve cells (motor neurons). They found that this hinders the activity of mitochondria, which are critical for cells to function.  

The researchers found that this process occurs during the early stages of ALS, initiating damage to motor neurons before patients develop serious symptoms. Eventually, the deterioration of nerve cells in the brain and spinal cord causes ALS patients to gradually lose voluntary muscle ability, leading to complete paralysis including the inability to breathe independently. 

Reversing the Domino Effect  

Using an experimental molecule (originally developed to enhance neural regeneration after injury), the team demonstrated its success in dismantling the toxic protein buildup found in ALS patients. Additionally, in lab models, the researchers showed that this approach actives the process of nerve regeneration, leading to almost complete rehabilitation from the disease. 

Together with Dr. Amir Dori, director of the clinic for neuro-muscular diseases at Sheba Medical Center, and scientists from the US, UK, Germany and France, Perlson and doctoral students Topaz Altman and Ariel Ionescu conducted the study through a series of experiments. The findings were published in the peer-reviewed journal Nature Communication.

Featured image: Prof. Eran Perlson

Experimental Drug Displays Effectiveness in Treating Symptoms of Autism and Alzheimer’s Disease

Has FDA orphan designation for a rare developmental disorder.

An extensive TAU-led international study found that an experimental drug, which has already been awarded orphan drug designation by the FDA for future treatment of a rare development disorder, may also be used for treating a variety of symptoms relating to autism, intellectual disability, and Alzheimer’s disease.

The drug, NAP, was discovered in the lab of Prof. Illana Gozes of the Tel Aviv University Sackler Faculty of Medicine’s Department of Human Molecular Genetics and Biochemistry. The latest study is an important milestone on the way to developing a drug, or drugs, that will help children with autism stemming from genetic mutations, as well as Alzheimer’s patients.

Groundbreaking Technology

In recent years, the FDA has granted the experimental drug with orphan drug designation and pediatric rare disease designation for treatment of a rare developmental disorder called ADNP syndrome, which can cause a variety of symptoms, among them intellectual disability and autism spectrum disorder.

In the current study, a team of researchers led by Prof. Gozes (also from Sagol School of Neuroscience) developed an innovative lab model and found that NAP can be effective in treating a broad spectrum of symptoms of ADNP syndrome, which is caused by mutations in the ADNP gene (essential to cerebral development and protecting cerebral brain cells). Previous studies showed that ADNP syndrome is related to Alzheimer’s disease and certain types of mental disabilities, developmental delays, and autism.

The study, which is the culmination of the MD/PhD student Dr. Gideon Carmon’s doctoral research, was joined by a team of researchers from Prof. Gozes’s lab: Dr. Shlomo Sergovich, Gal Hacohen-Kleiman, Inbar Ben-Horin-Hazak, Dr. Oxana Kapitansky, Alexandra Lubincheva, and Dr. Eliezer Giladi. The team was further joined by Dr. Moran Rubinstein, Prof. Noam Shomron, and Guy Shapira of TAU’s Sackler Faculty of Medicine, and Dr. Metsada Pasmanik Chor of Tel Aviv University’s The George S. Wise Faculty of Life Sciences. Researchers from the Czech Republic, Greece, Germany, and Canada also participated. The article was published in the prestigious journal Biological Psychiatry.

Important Milestone

Prof. Gozes explained that: “NAP, in fact, comprises a short segment of the normal ADNP protein. We previously found that treatment using NAP corrects the function of human nerve cells afflicted with ADNP syndrome in a laboratory test-tube. In this study, we sought to examine the efficacy of NAP in treating various aspects of the syndrome using a model with the most harmful mutation, which allowed us to view brain development and facilitate remedying of behavioral problems.”

The researchers found that mice suffering from ADNP syndrome demonstrated a broad spectrum of symptoms, including increased rates of neonatal death immediately after birth, slowed development and abnormal stride, primarily among females, as well as poor voice communication.

Cerebral examinations demonstrated additional findings: A relatively small number of synapses (the points of contact between nerve cells), impaired electrophysiological activity demonstrating a low potential for normal cerebral arousal, as well as excessive buildup of the Tau protein in young mice, similar to those in the brains of elderly Alzheimer’s disease patients.

Prof. Gozes: “In the past, we have found that NAP corrects impaired functioning of ADNP that has mutated in the nerve cell model in the culture. We now examined its effect in vivo – in animals modeling the syndrome (ADNP mutation). To our amazement and joy, we discovered that treatment using NAP normalizes the functioning of these mice for most of the symptoms indicated above!”

Prof. Gozes summarized: “In this study, we examined the effect of the ADNP gene’s most prevalent mutation in a broad spectrum of aspects and found extensive impairment in physical and cerebral functioning parallel to the symptoms of autism, developmental delay, mental disability, and Alzheimer’s disease in humans. Similarly, we examined the potential use of the NAP drug for treating these diseases, and discovered that it is effective against most of these symptoms in lab models. This study is an important milestone on the way to developing a drug, or drugs, that will help children with autism stemming from genetic mutations, as well as Alzheimer’s patients.”

Ramot – Tel Aviv University Tech Transfer Company filed a number of patent applications to protect the technology and its implementation and, in collaboration with Prof. Gozes, is raising funds to finance further clinical research. Similarly, Ramot is in discussions regarding commercial collaboration with pharmaceutical companies. “We’re excited by this new discovery and believe that this is groundbreaking technology that will remedy a variety of symptoms and disabilities in a broad spectrum of orphan diseases,” said Prof. Keren Primor Cohen, CEO of Ramot.

Featured image: Prof. Illana Gozes

Seaweed – A Promising Defense Against Covid-19

Natural substance from marine algae prevents infection.

The lack of access to Covid-19 vaccines results in the deaths of many people and even accelerates the development of new variants. Researchers from Tel Aviv University, led by Prof. Alexander Golberg of the Porter School of the Environment and Earth Sciences, have found that a substance called ‘ulvan’ extracted from edible marine algae prevents the infection of cells with the coronavirus.

The researchers believe this affordable and natural material may help solve serious problems, such as the spread of the coronavirus in large populations, especially in developing countries with limited access to vaccines. The study is still in its early stages, but the researchers are hopeful that the discovery will be used in the future to develop an accessible and effective drug to prevent coronavirus infection.

Affordable Solutions Needed

Prof. Golberg explains: “It is already clear today that the coronavirus vaccine alone, despite its effectiveness, will not be able to prevent the global spread of the pandemic. As long as the lack of access to vaccines remains unaddressed for billions of people in underprivileged communities, the virus is expected to develop increasingly more variants, which may be resistant to vaccines – and the war against the virus will continue.”

“It is very important to find affordable and accessible solutions to suit even economically weak populations in developing countries. With this aim, our lab tested a substance that could be extracted from a common seaweed. Ulvan is extracted from marine algae called Ulva, an edible ‘sea lettuce’ common in places like Japan, New Zealand and Hawaii,” he adds.

Golberg explains that his lab’s rational for exploring the potential use of ulvan for coronavirus defenses was motivated by previous discoveries of its effectiveness in preventing plant viruses along with some human viruses.

Successful Prevention Against Covid-19

To test their hypothesis, the TAU researchers grew Ulva algae and extracted the ulvan from it before sending samples to the Southern Research Institute in Alabama, which deals with infectious diseases. The US researchers built a lab model to test the activity of the substance produced by Prof. Golberg’s team. The cells were exposed to both the coronavirus and the ulvan. It was found that, in the presence of ulvan, the coronavirus did not infect the cells. As opposed to extracts from other algae tested, the substance demonstrated success in preventing coronavirus infection. 

According to the researchers, “The substance was produced in raw production, meaning it is a mixture of many natural substances, and we must find out which one is responsible for preventing cellular infection. After that, we will have to examine how, if at all, it works in humans.”

The research team consisted of Shai Sheffer, Arthur Rubin and Alexander Chemodanov from Dr. Golberg’s laboratory, Prof. Michael Gozin from the School of Chemistry and the Tel Aviv Universicy Center for Nanoscience and Nanotechnology. They collaborated with researchers from the Hebrew University, the Meir Medical Center in Kfar Saba, and the Southern Research Institute in Alabama, USA. The article was published in the journal PeerJ.

Featured image: Specially designed closed system with photobioreactors for seaweed production at TAU

New Ethical Code for World Research of Ancient DNA

TAU researcher was part of international team of experts who composed ethical standard.

For the first time, an international team of experts, among them TAU anthropologist and paleo-geneticist Dr. Viviane Slon from the Sackler Faculty of Medicine and the Dan David Center for Human Evolution and Biohistory Research, has formulated a globally-applicable ethical code for research of ancient human DNA. The significant increase throughout the last decade in research of ancient DNA extracted from human remains, and its effects on archeology and other fields, created a need to formulate a dedicated ethical standard that will guide researchers in their work.

Sixty-four international researchers from different fields – archeology, anthropology, curatorship, archeo-genetics and paleo-genetics – from 31 different countries, among them TAU anthropologist and paleo-geneticist Dr. Viviane Slon, took part in the formulation of the ethical code. The ethical code was recently published in the prestigious journal Nature.

Interdisciplinary and International Cooperation

Dr. Slon, who is also a member of Tel Aviv University’s Shmunis Family Anthropology Institute, explains that ancient DNA research has unique aspects, which raise the need for ethical regulations. The examination of past ancestry can have social and political implications today, and because ancient DNA research deals with people who once lived, they must be treated respectfully.

The newly-written ethical codes encourage minimal damage to the human remains during research processes, and call for cooperation with stakeholders, including any descendants or local communities as well as fellow researchers in other fields – and to respect their point of view.

Dr. Slon says: “The guidelines proposed here encompass all the different stages of research, from planning, through sampling and sharing of data and results, to communicating with our fellow researchers and with the general public. It is an international project born out of a virtual meeting that took place about a year ago, in which there was a wide consensus regarding the need for ethical regulations in this growing field, and here we have the final product.”

“We hope to increase its impact, and we are working to translate the paper into dozens of languages, including Hebrew. Recently, researchers from the Shmunis Family Anthropology Institute and the Dan David Center for Human Evolution and Biohistory Research led the breakthrough research discovering ancient human remains in the vicinity of the Nesher Ramla factory. Due to the foundational principals  laid  for the expansion of the interdisciplinary cooperation in the world of ancient DNA research, we will now be able to maximize the scientific accomplishments in this field, in Israel and throughout the world.”

Featured image: Dr. Viviane Slon (Photo: Fabrizio Mafessoni)

TAU Ventures Raises $50M to Boost Israeli Startups

Israel’s first university investment arm leverages academic power to enrich startup ecosystem.

Tel Aviv University’s own investment arm, TAU Ventures, recently announced that it has secured $50 million for a new fund to invest in startups, with the potential to top-up to $70 million. According to Prof. Ariel Porat, President of Tel Aviv University, “TAU Ventures provide entrepreneurs with a platform for significant opportunities in innovation and extends the power of academia beyond the campus boundaries.”

TAU is consistently ranked as a top university producing entrepreneurs, its alumni ranked 5th globally and 8th in the world for entrepreneurship. The fund intends to invest in 15 to 25 companies founded by Israeli entrepreneurs, and – as part of TAU Ventures’ mandate – all the companies will be run by at least one TAU alumnus/a or TAU student.

Combining Forces between Academia and Industry

Housed in the Miles S. Nadal Home for Technological Innovation and Entrepreneurship, TAU Ventures invest much more than money in their portfolio companies, creating value for entrepreneurs by offering unique TAU resources, including: 

  • A Global Network – High-quality and sizeable network across the globe
  • Expert Knowledge – Connecting entrepreneurs with relevant sources of knowledge across campus
  • Man Power – In shape of TAU students who are interested in either joining the startups as interns (for which they earn credits for their studies) or as full time workers
  • Free Office Space – In close proximity to the TAU Venture team, who are comfortably seated in a 1000m² offices near the campus.

“It enables students to integrate practical experience with leading startups during their studies, and at the same time, it enables entrepreneurs to enjoy the diverse qualities of the campus,” says Prof. Porat.

“I’m happy about the given trust of the investors in TAU Ventures and I’m sure that combining forces between academia and industry will provide in the near future significant technological achievements that will benefit the entrepreneurs, the university and society at large.” 

TAU Takes Leading Role in Early Stage Investments

TAU Ventures was established in 2018 by Managing Partner, Nimrod Cohen, together with Tel Aviv University, with the interest in taking a leading role in early stage investments across a wide range of sectors (fintech, foodtech, drones, etc.) in Israel. This is part of a successful trend in the United States of leading universities including MIT, Berkeley & Stanford establishing venture investment arms. 

“Many investors prefer to operate in A or post-seed stages, as they would rather see a product that has already reached the market. We are covering the critical early stage, enabling new companies to emerge,” says Cohen.

Israel’s first university investment arm has proven to be a huge success: TAU Ventures’ first fund of $20 million began in 2018 and made 18 investments including: SWIMM, Xtend, Gaviti, MyAir, Castor, Medorion and more. The first fund IRR is in the top 10% compared to all US funds from the same size and vintage.

All investors from the previous fund have now reinvested in the current fund. Both funds were led by Chartered Group, which brings together leading entities from Japan, plus new investors, including Family Offices in the US, Canada and Europe.

Featured image: TAU Ventures Team, clockwise: Inbal Perlman, Jennifer Schwartz, Ella Iwler and Nimrod Cohen

Victoria

Tok Corporate Centre, Level 1,
459 Toorak Road, Toorak VIC 3142
Phone: +61 3 9296 2065
Email: [email protected]

New South Wales

Level 22, Westfield Tower 2, 101 Grafton Street, Bondi Junction NSW 2022
Phone: +61 418 465 556
Email: [email protected]

Western Australia

P O Box 36, Claremont,
WA  6010
Phone: :+61 411 223 550
Email: [email protected]