Google Awards Competitive Grant to Tel Aviv University for COVID-19 Research

The grant is for high-impact research using Data Science and Artificial Intelligence (AI) to combat the coronavirus

Google.org, a Google fund aimed at supporting data based solutions for some of humanity’s greatest challenges, chose to award a competitive grant to Tel Aviv University for high-impact research employing Data Science and Artificial Intelligence (AI) to combat COVID-19. This step is one of many taken by Google in its ongoing effort to contribute to the global battle against the pandemic while also promoting its “AI for Social Good” research program – headed by, among others, Prof. Yossi Matias, Vice President at Google and CEO of the Research and Development Center at Google Israel. The Israeli center is a key player in Google’s endeavors to combat COVID-19, and also to help protect populations faced with natural disasters such as floods, earthquakes and wildfires.

The grant is being awarded to TAU’s AI and Data Science Center for research employing AI techniques and advanced statistical methods to improve COVID-19 public health measures. Using data from government ministries (Health, Transport, etc.) and the Israel Central Bureau of Statistics, the researchers intend to build an accurate high-resolution model of the spread of the pandemic and then use it to plan and test various methods for stopping infection. This interdisciplinary research brings together TAU scientists from the Porter School of the Environment and Earth Sciences, the School of Public Health, the Department of Statistics and Operations Research, the Blavatnik School of Computer Science, the School of Electrical Engineering, and the Gertner Institute for Epidemiology and Health Policy Research.

Prof. Meir Feder, Head of the AI and Data Science Center at Tel Aviv University: “We’re proud that Google has chosen to award this significant grant to our center in order to expand COVID-19 research in Israel. This grant will support the development of AI and Reinforcement Learning based tools for planning and examining the effects of different steps on the spread of the pandemic. The research findings will be used by decision-makers in their efforts to establish policies for stopping the pandemic.”

Featured image: Prof. Meir Feder, Head of the AI and Data Science Center at Tel Aviv University

TAU Joint Study: COVID-19 Deaths Dive on Weekends

TAU Economics Prof. Neil Gandal and his brother of CCNY find one city that defies trend: New York City

Tel Aviv University’s Prof. Neil Gandal from Berglas School of Economics, together with his brother Prof. Keith Gandal from City College of New York, examined U.S. COVID-19 deaths by day of the week. Mysteriously, the same pattern has repeated every single week of the pandemic: deaths rise from Tuesday-Friday and come down Saturday-Monday, hitting a nadir on Sunday or Monday. Controlling for time trends, deaths during weekends were at least 40 percent lower than on weekdays.

According to the researchers, the average death toll from COVID-19 in the U.S. has been 901 deaths on Saturdays, 682 on Sundays, and 699 on Mondays. The Sunday-Monday average then sharply rises on Tuesdays to 1,119. Wednesdays are the worst in terms of COVID-19, with an average of 1,130 deaths – nearly 95 percent higher than your average Sunday and almost 90 percent higher than your average Monday. Then, on Thursdays, the daily average begins to go down again with 1,128 deaths, followed by 1,033 deaths on Fridays.

This weekend effect does not occur in New York City. Without New York City, deaths during the Tuesday to Friday period in the U.S. are 50 percent higher than the Saturday to Monday period.

The same effect was found in COVID-19 mortality rates for the rest of the world – though much weaker; there is a 20 percent less chance of dying from the disease on weekends than on weekdays globally. Historical research shows that such a weekend effect exists for overall deaths, but it is weaker than with COVID-19. In the case of England, for example, researchers found that for every 100 deaths among patients in a hospital on Wednesday, there are 92 deaths among similar patients in the hospital on a Sunday. 

“The robustness analyses we did, and the fact that the weekend effect does not exist in NYC, suggest that our results are not likely due just to reporting issues,” says Prof. Neil Gandal. “It seems to us probable that something social or cultural is going on with overall U.S. COVID-19 deaths, corresponding to differing behaviors and attitudes tied to different parts of the week. Perhaps people tend to relax more on the weekends, even in hospitals or long-term care facilities. Meanwhile, in NYC, my brother Keith tells me, the familiar rhythms of the American week were simply wiped away between mid-March and the end of May. During that period, every day seemed the same, as in the movie ‘Groundhog Day.’ Except it was Coronavirus Day. Each day, you woke up to disbelief, dread, even horror, and soon enough, you heard the wail of ambulances. All day long, no one was on the streets. Even Times Square was empty. The sirens didn’t stop at night. Could worrying, watching the frightening news coverage of the pandemic, and ultimately panicking about COVID-19, be increasing the death toll? We leave this for future research.”

TAU Wins 3M Grant to Accelerate COVID-19 Vaccine Development

Grantee Professor Jonathan Gershoni aims to block the coronavirus by targeting its most vulnerable spot

Science-based technology company 3M has awarded a significant philanthropic research grant of $400,000 (1.36 million NIS) to the Shmunis School of Biomedicine and Cancer Research at Tel Aviv University to advance scientific knowledge in the global response to the COVID-19 pandemic. The grant from 3M, which bases its Israel operations in Herzliya, is part of a $5 million initiative to support research programs with a focus on treatments and vaccine development for COVID-19 at leading educational establishments around the world. TAU secured the funding through an international competitive process; this reflects the high esteem in which the University’s scientific research programs are held. The grant was disbursed via 3M’s grant-making partner, GlobalGiving, to ensure thorough vetting, due diligence and reporting. The research project is being led by Professor Jonathan Gershoni, a renowned expert in viral pathogens, who said: “Publication of the SARS CoV2 genome on January 9, 2020, launched the race for a COVID-19 vaccine. Tens of vaccine candidates have already entered clinical trials, the leaders of which are actively recruiting thousands of volunteers worldwide for phase III efficacy trials. All these efforts use the viral spike protein as their vaccine’s active ingredient. This relatively large protein is made up of 1200 amino acids arranged in groups of three, decorating the virus with a crown-like appearance. “The spike protein presents many targets that have evolved to confuse and distract our immune system and to steer us away from the virus’ most vulnerable soft spot, its receptor-binding motif (RBM). In order for the virus to successfully infect us and cause COVID- 19, it must first latch onto a unique protein, the ACE2 receptor, which is present on the surface of our lung cells. For this, the viral RBM, a tiny but highly complex structure, must detect ACE2, bind to it and mediate infection. A vaccine that exclusively targets the RBM should be extremely potent in affording maximal protection against SARS CoV2 by stimulating our immune system in the most efficient and cost-effective way. “We have developed a novel patented technology to ‘surgically’ isolate the RBM from the rest of the spike protein. This grant from 3M will significantly enhance our efforts to produce a highly focused, potent and especially safe vaccine for COVID 19,” he added. Prof. Gershoni’s Lab team (Photographer: Moshe Bedarshi) This study is anchored in more than 30 years of research on the interaction of RNA viruses with their receptors and the immune response against them, noted Professor Tal Pupko, Head of the Shmunis School at TAU. “The 3M grant will dramatically accelerate the pace of research for overcoming COVID-19,” said Professor Pupko, adding that Tel Aviv University was particularly proud to be included in this important global initiative by 3M. “Science is at the heart of 3M and we are committed to advancing the rapid study of this virus as part of our continued effort to combat the COVID-19 pandemic,” said Isabelle Zadikov-Carp, 3M Israel Country Leader. “It’s important that 3M holds true to its core values by supporting our communities and improving lives. We hope that the grant to TAU will facilitate the development of an effective vaccine and we will be keenly following the progress and outcomes of Professor Gershoni’s research with interest.” Featured image: Professor Jonathan Gershoni (Photographer: Moshe Bedarshi)

New school for Biomedicine and Cancer Research at Tel Aviv University

The school, funded by a generous endowment from the Shmunis Family, aims to research and improve treatments for cancer, COVID-19 and other diseases

Israel’s Minister of Science and Technology Yizhar Shay and TAU President Prof. Ariel Porat will attend the inauguration ceremony of the Shmunis School of Biomedicine and Cancer Research, to be held on Wednesday, August 12, 2020.

The School belongs to the George S. Faculty of Life Sciences and the generous donation will enable a leap in groundbreaking research. At the Shmunis School researchers will be able to identify mechanisms that drive cancer and other diseases, developing new pharmaceuticals and improving patients’ quality of life. This will be achieved through multidisciplinary collaborations and novel research approaches, such as single cell sequencing, proteomics, lipidomics and bioinformatics.

In addition, the new partnership will enable the University to recruit the finest researchers into its faculty, attract the best post-doctoral candidates, award the annual Shmunis Fellowships to exceptional PhD students, and more. The School will also collaborate with many leading academic institutions and host Shmunis Visiting Scholars and international conferences.

Create an important impact

Yizhar Shai, Israel’s Minister of Science and Technology: ”Tel Aviv University is one of the leading academic institutions in Israel and the inauguration of the Shmunis School of Biomedicine and Cancer Research proves that the university also made an international name for itself. Connections like that, between the academia and industry’s needs, create an important impact on academic institutions, the students passing through them, and the whole Israeli economy. I congratulate the Shmunis family for the most welcome donation which promotes cancer research. I have no doubt that the research and the developments from this institution will be Israel’s pride and joy.”

Prof. Ariel Porat, President of TAU: “I am grateful to the Shmunis family for their important and generous gift. The funds will enable researchers at the School to work at the forefront of global science and to develop insights leading to the development of new technologies and drugs in the battle against cancer and other serious diseases.”

Vlad and Sana Shmunis expressed the hope that the gift will help strengthen Israel’s standing as a global leader in cancer and molecular biomedical research. Vlad Shmunis: “My wife Sana and I are very happy that we can take part in supporting frontline research. Cancer is a disease that has unfortunately touched our family and far too many other families around the world.  We hope that our gift to TAU will significantly advance research and treatment of cancer and other serious diseases to improve the lives of people in Israel and around the world.”

Featured image: TAU President Prof. Ariel Porat and Israel’s Minister of Science and Technology Izhar Shay (Photo Credit: Chen Galili)

TAU Researcher Invents Environmentally-Friendly Sanitizer

Innovative method to convert waste into disinfectant is a pandemic game-changer

The fight against coronavirus began with disinfection and hygiene. Prof. Hadas Mamane, head of the Water-Tech Laboratory at TAU’s Iby & Aladar Fleischman Faculty of Engineering is now helping to secure Israel’s sanitizer supply in the ongoing battle against the spread of coronavirus. Her lab is running a pilot program to convert local waste into alcohol that will be used for sanitation and disinfection. In the COVID-19 era, global demand for alcohol-based sanitizer soared, as proper hygiene and sanitation became mainstays of prevention efforts. Yet at the same time, many countries, including Israel, imposed import restrictions, making the procurement of sanitation and disinfectant materials difficult. To address this shortage, a team led Prof. Mamane adapted an existing waste conversion model to produce alcohol disinfectant locally. Prof. Mamane’s team began by running an experiment to make ethanol, an alcohol derived from corn and the most common ingredient in hand sanitizers and other disinfectants. As a local alternative to corn, Prof. Mamane checked a variety of waste sources. She experimented with waste from municipal and agricultural pruning, hay, paper and cardboard. Prof. Mamane is continuing the project by using more types of green waste, testing the process on a larger scale and studying its cost-effectiveness. Because her method relies on locally sourced material, it offers a decentralized model for ethanol production that reduces reliance on imports. Mamane’s production method not only reuses the almost endless supply of garbage, but also reduces overload on waste management systems. The process does not use hazardous materials or cause pollution, can be applied on a small or large scale, and is applicable to varied types and large amounts of waste. This initiative has additional widespread benefits: “A decentralized [recycling] process enables farmers to avoid burning their agricultural waste, and instead offers environmental and social benefits to the community and, most importantly, protects public health,” says Prof. Mamane. This research is a collaboration between Prof. Mamane and the University of Haifa-Oranim College, and is funded by the Ministry of Science. Featured image: Prof. Hadas Mamane (Credit: Vered Cohen-Yaniv)

TAU Researcher Fights Epidemics Both Viral and Virtual

Dan Yamin can detect any kind of contagious outbreak

TAU’s Dr. Dan Yamin has developed a data tracking system applicable both to infectious diseases like coronavirus and to anti-Israel bias on social media. He cites human behavior as a key factor in the transmission of both. Yamin, who heads the Lab for Epidemic Modeling and Analysis at TAU’s Fleischman Faculty of Engineering, says that his approach is based on what traditional epidemiology lacks – data on human behavior. “At the core of any transmission process lies contact mixing patterns,” explains Yamin. “These patterns represent the social interactions of individuals,” adding that, when it comes to the spread of diseases, “whoever doesn’t consider these elements misses the point completely”. Together with Prof. Irad Ben-Gal, head of TAU’s Laboratory of AI, Machine Learning, Business & Data Analytics (LAMBDA), Yamin developed a tool for predicting transmission dynamics based on people’s movements tracked on their mobile phones. When COVID-19 broke out in Israel, Yamin consulted for Israel’s Health Ministry, predicting local outbreaks with this phone data system. “The tool is not only helpful for local detection of the virus but also for creating simulations of the virus’ spread, telling us what will happen if one policy is replaced with another,” he says. For example, Yamin’s team recommended to the Health Ministry that daycare centers should re-open, based on data they collected. Additionally, Yamin found that targeted lockdowns for high-risk groups and localized infection clusters are up to 5 times more efficient in reducing mortality as opposed to a nationwide lockdown strategy. This finding led the Israeli government to adopt its current targeted lockdown approaches. Now, months later, Yamin and his team are developing a tool for early detection of COVID-19 infection based on mobile phone sensors which measure step counts, sleeping habits and other parameters.

Think viral, tweet viral

Before joining TAU, Yamin completed a post-doctoral fellowship at Yale University’s School of Public Health. While there, he was disturbed by the level of anti-Israel sentiment on American social networks and its ability to go viral. He immediately made the connection. No paragraph breakBased on the same patterns he studied in disease transmission, Yamin began creating a system that uses artificial intelligence to identify how certain groups use viral marketing tactics to spread anti-Semitic and anti-Israel messages. The system, known as Iron Dome for Social Media, aims to track and identify malicious content with potential to go viral in social media terms. Yamin explains that people who retweet posts casually are much like asymptomatic disease carriers. Many Twitter users will pass on information with covert or explicit anti-Semitic messages unintentionally. Choosing when to respond on social media is a delicate matter. Hence, Yamin suggests using AI, such as in his Iron Dome system, to assist with the decision-making process. “Being proactively pro-Israel on social media is not always the best approach,” says Dr. Yamin. “Most anti-Israel tweets are not viral, so why waste time on tweets that won’t go anywhere?”

The next generation of disease control

As Israel and the world face the second wave of COVID-19, Yamin says, “for the time being, we need to live with this virus. If we act responsibly and maintain the daily routine for the vast majority of the population, we will not reach catastrophe”. Looking ahead, Yamin believes data-based methodologies like his are crucial in managing future viral diseases. As such, Yamin will be a key member of TAU’s multidisciplinary Center for Combating Pandemics, the first center of its kind in the world. “Data systems such as this one can substantially improve the accuracy of medical diagnosis in the future,” he says. Dr. Dan Yamin (Photo: Moshe Bedarshi)

Tel Aviv University presents an analysis of the reaction of human antibodies to the coronavirus

Patients with severe COVID-19 develop antibodies faster than those with a mild case of the disease.

A team of researchers from Tel Aviv University and the Sharon Hospital at the Rabin Medical Center, led by Prof. Motti Gerlic and Prof. Ariel Munitz of the Department of Microbiology and Clinical Immunology at TAU’s Sackler School of Medicine, applied an innovative antibody test to about 70 COVID-19 patients at the Sharon Hospital. The researchers examined the development of antibodies targeting two different viral proteins in the patients’ bodies, and found that severely ill patients developed the antibodies at a faster rate than those with a mild case of the disease. In addition, antibodies of the type IgG were maintained in the blood of most patients throughout the study. This project has important implications for our understanding of the immune response to SARS-CoV-2, as well as future tracking of the effectiveness of vaccines and population surveys (serological tests).

A diagnostic tool

The researchers found that antibodies of the type IgM, that usually develop at the early stages of viral contagions, developed early in this case only against the protein RBD – the site at which the virus SARS-CoV-2 binds to human cells, and not against the virus’s nuclear protein. “We sampled the antibodies of about 70 COVID-19 patients at the Sharon Hospital, throughout the outbreak of the disease in Israel,” says Prof. Munitz. “Our first finding was that not all viral proteins generate a rapid immune response, but that antibodies targeting the RBD protein did develop very quickly once the symptoms appeared. This finding is quite significant, because it suggests that the test we used may be utilized as a diagnostic tool at different stages of the illness.” “The second thing we noticed, which is even more interesting, is that patients defined as severely ill developed antibodies at a faster rate than mildly ill patients, but ultimately all patients exhibited a similar immune response,” recounts Prof. Munitz. “Patients with mild, moderate and severe COVID-19 all developed the same level of antibodies. This is important, because one might have thought that the severely ill became so sick because they did not develop a sufficient amount of antibodies, and were thus unable to combat the virus effectively. We assume that the fast development of antibodies in these patients indicates that their immune system is hyper-active, but this hypothesis requires further research.”

Immunological memory

“We measured the levels of antibodies in the patients’ blood when they arrived at the hospital, during the period of hospitalization and after their release,” explains Prof. Gerlic. “We tried to understand whether the level of antibodies in their blood corresponded in any way to the severity of the illness, whether the antibodies developed in a similar way in all patients, and whether they remained in the blood for long periods of time – a critical factor for the ‘herd immunity’ we all wish to attain. We found that at later stages of the disease, about 50 days after the initial appearance of symptoms, a significant decline occurred in the presence of antibodies types IgM and IgA, regardless of the severity of the illness. In IgG-type antibodies, however, we observed only a slight decrease, even in mildly ill patients. IgG-type antibodies play an extremely important role in the immune response because they can neutralize the protein that binds the virus to human cells to enable contagion – thereby preventing the virus from penetrating the cells. We have not yet examined how the antibody actually works, and we do not know whether or not it neutralizes the virus, but the facts that these antibodies are quickly produced in all patients, and stay in the blood for a long time, suggest that they provide some level of immunity. So far, we have found that IgG-type antibodies remain in the body for two months. We will continue to monitor the patients for another year, to find out how long the antibodies remain in their bodies – hoping for the formation of an immunological memory.” In the new study the researchers from TAU used a new serological test developed in their laboratory. The IDF’s Medical Corps has already used the serological test developed by Prof. Gerlic and Prof. Munitz to detect COVID-19 antibodies in the blood of IDF soldiers. Within the next few weeks the test will be sent to the Israel’s Ministry of Health for validation, so that it may be used in population surveys. “Alongside the interesting findings,” says Prof. Munitz, “we wanted to demonstrate that our method is valid and more effective than the prevalent test for antibodies targeting viral proteins. To this end we examined samples of antibodies from the blood of COVID-19 patients, alongside samples from 200 healthy participants, taken before November 2019. We proved that our test, based on the antibodies, was able to distinguish between those who were ill and those who were not – at very high levels of sensitivity and specificity. One reason for this success is that we screen for three different antibodies: IgM that appears early and declines early, IgA – found on mucous surfaces like the lungs, and IgG, which we intend to test in the long run, because it may possibly lead to immunity.

New TAU study tracks coronavirus spread patterns in Israel

Research finds approximately 70% of the infections in Israel were caused by a SARS-CoV2 strain imported from the United States

A  team of Tel Aviv University researchers led by Dr. Adi Stern of the School of Molecular Cell Biology and Biotechnology at TAU’s George S. Wise Faculty of Life Sciences have conducted the first large-scale genomic sequencing of the novel coronavirus strain that has infected to date over 16,500 people in Israel. The scientists harnessed their genomic map to pinpoint mutations indicating where the virus originated from and later spread to within Israel. The study is based on an analysis of the genomic sequences of over 200 patients at hospitals across Israel, who together constitute a representative sample of the general population. TAU doctoral students Daniel Miller, Noam Harel, Talia Kostin, Omer Tirosh and Moran Meir conducted the research for the study in collaboration with scientists at Emory University, Gertner Institute, Chaim Sheba Medical Center, the Holon Institute of Technology, Assuta Hospital Ashdod, Hadassah Ein Karem Medical Center, Soroka Medical Center, Barzilai Medical Center, Poriya Medical Center, and the Genome Center at the Technion Institute of Technology.

The origins of coronavirus

“The novel coronavirus is characterized by mutations that occur at a set pace,” explains Dr. Stern. “These mutations do not affect the virus, i.e. it remains stable, but these mutations can help us trace the chain of infection from country to country. After the pandemic broke out in Wuhan, for example, one or two mutations occurred, and one virus with a mutation may have migrated to Europe where it experienced additional mutations, and from there it traveled to the United States, and so on. “We can look at these mutations as a kind of barcode that helps us keep track of the progression and transformation of the coronavirus as it moves from country to country.” To obtain a clear picture of the origin of infection in Israel, the researchers compared the genomic sequences of local patients to some 4,700 genomic sequences taken from patients around the world. They found that more than 70% of the patients had been infected by a coronavirus strain that originated in the U.S. The remaining nearly 30% of infections were imported from Europe and elsewhere: Belgium (8%), France (6%), England (5%), Spain (3%), Italy (2%), the Philippines (2%), Australia (2%) and Russia (2%). According to Dr. Stern, the new genomic map provides insight into the precise spread of the novel coronavirus within Israel. Until now, any assessment of the spread of infection relied on such subjective parameters as patient feedback. The new research will be able to expose the rate of infection in a household, in an apartment building, in a school, in a neighborhood, and more. It will also provide early detection of super spreaders – people who travel far and wide and infect a large number of people – and could even identify major events with the potential to trigger widespread infection.

The importance of 10%

“Going forward, the data obtained from genomic sequencing will serve as an important basis for informed decisions about which institutions to close, for what amount of time, and in which format,” says Dr. Stern. With policymakers in mind, the researchers developed a complex statistical model based on genomic sequencing that estimates the epidemiological parameters of viral spread. The model shows that the rate of infection decreased significantly following strict quarantine measures taken in Israel and highlights a major discrepancy between the number of people each coronavirus patient infected. The model also estimates that over 80% of coronavirus cases in Israel were the direct result of only 10% of the coronavirus patients in Israel, meaning that these 10% were, in fact, super-spreaders. According to the model and to the genomic sequencing, Dr. Stern says that no more than 1% of the population in Israel contracted the virus – a far cry from herd immunity. “In our study, we performed the first massive genomic sequencing of the coronavirus in Israel,” she concludes. “This technology and the information it provides is of great importance for understanding the virus and its spread in the population, as a scientific and objective basis for local and national decision-making. The data obtained from the research can greatly help policymakers on issues such as closures and quarantines. In doing so, the study makes a significant contribution to dealing with the epidemic in Israel, and, more importantly: We have developed tools that will allow us to cope, in real time, with the next outbreak that may occur.”

TAU partners with pharma company to develop COVID-19 vaccine

The epitope-based vaccine will target the most vulnerable part of the viral spike protein

Ramot, Tel Aviv University’s technology transfer company, and Neovii, a Swiss-based biopharmaceutical company and a member of Israel-based Neopharm Group, announced today that they have signed a research and license agreement to develop a novel and potentially life-saving COVID-19 vaccine. Neovii will work in close collaboration with a team of scientists led by Prof. Jonathan Gershoni of TAU’s School of Molecular Cell Biology and Biotechnology. The agreement grants Neovii the exclusive right to develop and commercialize a novel and recently patented platform technology conceived by Prof. Gershoni for the rapid discovery of epitope-based vaccines. The collaboration is focused on the development of a first-in-class COVID-19 vaccine that reconstructs the coronavirus’s Receptor Binding Motif (RBM), a critical structure of its “spike” protein. The “spike” protein itself is the major surface protein that the virus uses to bind to the cellular receptor that acts as the doorway into the human cell. After the spike protein binds to the human cell receptor, the viral membrane fuses with the cell membrane, allowing the genome of the virus  to enter the cell and begin infection. “We have been working on coronaviruses for the last 15 years developing a method of reconstructing and reconstituting the RBM structure of the spike protein in SARS-CoV and subsequently in MERS-CoV,” explains Prof. Gershoni. “The moment the genome of the new virus was published in early January 2020, we began the process of reconstituting the RBM of SARS-CoV-2, the virus that causes COVID-19, and expect to have a reconstituted RBM of the new virus soon. This is the basis for the new vaccine, which could be ready for use within a year to a year and a half.”

Targeting the Achilles’ heel of coronavirus

“The smaller the target and the focus of the attack, the safer and greater the effectiveness of the vaccine,” he adds. “The virus takes far-reaching measures to hide its RBM from the human immune system, but the best way to ‘win the war’ is to develop a vaccine that specifically targets the virus’s RBM.” Keren Primor Cohen, Ramot CEO says: “We hope that through this collaboration with Neovii, it will be possible to produce an effective vaccine that targets the coronavirus’s Achilles’ heel and will accelerate the development of a protective vaccine against this global threat.” Jürgen Pohle, Neovii CEO, adds: “The outbreak of the COVID-19 pandemic has demonstrated how fragile and vulnerable our societies are in the face of a pandemic.  We are extremely excited about our collaboration with Professor Gershoni and TAU which provides Neovii with a first-in-class platform for the rapid development of promising vaccine candidates towards any future emerging pandemics including COVID-19. Furthermore, the COVID-19 vaccine is highly synergistic to Neovii’s core expertise in the development and manufacturing of passive polyclonal antibodies and provides an opportunity to bring a COVID-19 immunotherapy in a rapid manner.” Neovii’s long-standing and well-established experience and capabilities in developing, manufacturing and commercializing biopharmaceuticals will support the objective to have a vaccine ready for use in the general population on an accelerated timeline.

A world first: TAU to establish multidisciplinary Epidemic Research Center

The Center will bring together experts in the field and help the State of Israel deal epidemic-related crises

Tel Aviv University has announced the establishment of the Center for Combating Pandemics, a first of its kind multidisciplinary epidemic research center, at an investment of tens of millions of shekels. Mr. Frank Lowy, an Australian businessman and philanthropist made a significant initial gift to the center. Meanwhile, many other philanthropic foundations have expressed interest in joining the initiative. The Center will bring together top experts from TAU’s diverse fields of knowledge: medicine, biology, mathematics, physics, economics, engineering, education, psychology and more. These researchers will work with counterparts at leading hospitals and academic institutions in Israel and around the world to advance research in the field with the ultimate aim of assisting the State of Israel in coping with future epidemics. Alongside its research activity, the Center will submit policy recommendations and papers to international policy makers, take part in international conferences, help draft informative material for public consumption and will provide scholarship and research grants to outstanding students and scholars. TAU President Prof. Ariel Porat: “For the first time, the innovative research center will allow researchers to join forces, pool their resources and examine the implications of the pandemic from different perspectives. The collaborative efforts will enable researchers to produce a bird’s eye view that will offer insight into the best ways to deal with future crises of this kind.”
  • 1
  • 2

Australian Friends of Tel Aviv University

1/459 Toorak Road, Toorak VIC 3142
Phone:  +61 433614222
Email: office@aftau.asn.au