Skip to main content

Combating Antibiotic Resistance

Written on |

Discovery may contribute to new treatments for infectious diseases.

A new TAU study revealed a mechanism through which “good” viruses can attack the systems of “bad” bacteria, destroy them and block their reproduction.

“Good” Viruses Kill “Bad” Bacteria

The researchers demonstrated that the “good” virus (bacteriophage) is able to block the replication mechanism of the bacteria’s DNA without damaging its own, noting that the ability to distinguish between oneself and others is crucial in nature. The discovery reveals one more fascinating aspect of the mutual relations between bacteria and bacteriophages and may lead to a better understanding of bacterial mechanisms for evading bacteriophages, as well as ways for using bacteriophages to combat bacteria. The study, published recently in PNAS – Proceedings of the National Academy of Sciences, was led by Prof. Udi Qimron, Dr. Dor Salomon, Dr. Tridib Mahata and Shahar Molshanski-Mor of the Sackler Faculty of Medicine. Other participants included Prof. Tal Pupko, Head of The Shmunis School of Biomedicine and Cancer Research and also of TAU’s new AI and Data Science Center; Dr. Oren Avram of The George S. Wise Faculty of Life Sciences; and Dr. Ido Yosef, Dr. Moran Goren, Dr. Miriam Kohen-Manor and Dr. Biswanath Jana of the Sackler Faculty of Medicine.

A Great Scientific Challenge

Prof. Qimron explains that the antibiotic resistance of bacteria is one of the greatest challenges faced by scientists today. One potential solution may lie in further investigation of the targeted eradication of bacteria by “good” bacteriophages; namely, understanding bacteriophage mechanisms for taking over bacteria as a basis for the development of new tools to combat bacterial pathogens. With this solution in mind, the current study unveiled the mechanism by which the bacteriophage takes control of the bacteria. The researchers found that a bacteriophage protein uses a DNA-repair protein in the bacteria to “cunningly” cut the bacteria’s DNA as it is being repaired. Since the bacteriophage’s own DNA has no need for this specific repair protein, it is protected from this nicking procedure. In this way the “good” bacteriophage does three important things: it distinguishes between its own DNA and that of the bacteria, destroys the bacteria’s genetic material, and blocks the bacteria’s propagation and cell division. The process by which the bacteriophage destroys the bacteria’s genetic material Prof. Qimron explains that, “The ability to distinguish between oneself and others is of enormous importance in nature and in various biological applications. All antibiotic mechanisms identify and neutralize bacteria only, with minimal effect on human cells.” The researchers discovered the process by searching for types of bacterial variants not impacted by this bacteriophage mechanism – those that have developed “immunity” to it. This inquiry led them to the specific bacterial mechanisms affected by the bacteriophage takeover. “Shedding more light on the ways in which bacteriophages attack bacteria, our findings may serve as a tool in the endless battle against antibiotic-resistant bacteria,” concludes Prof. Qimron. Featured image: Illustrative: Bacteriophage or phage virus attacking and infecting a bacterium

Related posts

Heart Disease’s Cancer Link Unveiled

14 April 2024

Do Green Environments Help Heart Patients Live Longer?

4 April 2024

TAU Receives $12.67M Grant for Medical Simulation Center

1 April 2024

Breaking the MedTech Glass Ceiling

27 March 2024

Summer Glow: How Sun Exposure Boosts Fertility in Women Ages 30-40

7 March 2024

Are We Close to Ending Alzheimer’s Memory Loss?

15 February 2024

Destroying Cancer: new drug delivery system containing RNA therapy can target cancer cells in bone marrow

31 July 2023

Stress Makes Vaccines Less Effective

26 July 2023

Researchers Induce Cancer Cell “Suicide”

17 July 2023

Metabolomics – A New Frontier in Preventive Medicine

13 July 2023

Older Bats do Suffer from Age-related Hearing Loss

13 July 2023

Operation Guardian of the Walls: Women, Young People and Residents of the South Paid the Heaviest Price

12 July 2023

Discovery May Lead to Personalized Medicine for Infectious Diseases

12 July 2023

One Third of Normal-Weight Individuals are Obese

12 July 2023

Breakthrough Gene Therapy Offers Hope for Severe Developmental Epilepsy in Children

27 June 2023

Prof. Isaac P. Witz Honored with 2023 Szent-Györgyi Prize for Progress in Cancer Research

26 June 2023

Victoria

Tok Corporate Centre, Level 1,
459 Toorak Road, Toorak VIC 3142
Phone: +61 3 9296 2065
Email: [email protected]

New South Wales

Level 22, Westfield Tower 2, 101 Grafton Street, Bondi Junction NSW 2022
Phone: +61 418 465 556
Email: [email protected]

Western Australia

P O Box 36, Claremont,
WA  6010
Phone: :+61 411 223 550
Email: [email protected]