Skip to main content

Diamonds, Gold and the New Alchemy of Materials

Written on |

How can a simple shift create something more valuable than gold?

Can copper be turned into gold? For centuries, alchemists pursued this dream, unaware that such a transformation requires a nuclear reaction. In contrast, graphite—the material found in pencil tips—and diamond are both composed entirely of carbon atoms; the key difference lies in how these atoms are arranged. Converting graphite into diamond requires extreme temperatures and pressures to break and reform chemical bonds, making the process impractical.

A more feasible transformation, according to Prof. Moshe Ben Shalom, head of the Quantum Layered Matter Group at Tel Aviv University, involves reconfiguring the atomic layers of graphite by shifting them against relatively weak van der Waals forces. This study, led by Prof. Ben Shalom and PhD students Maayan Vizner Stern and Simon Salleh Atri, all from the School of Physics & Astronomy at Tel Aviv University, was recently published in the prestigious journal Nature Review Physics.

The research team

While this method won’t create diamonds, if the switching process is fast and efficient enough, it could serve as a tiny electronic memory unit. In this case, the value of these newly engineered “polytype” materials could surpass that of both diamonds and gold.

Like LEGO, But Atomic

PhD student Maayan Vizner Stern explains: “Like graphite, nature produces many other materials with weakly bonded layers. Each layer behaves like a LEGO brick—breaking a single brick is difficult, but separating and reconnecting two bricks is relatively simple. Similarly, in layered materials, the layers prefer specific stacking positions where atoms align perfectly with those in the neighboring layer. Sliding between these positions happens in tiny, discrete jumps—just an atomic distance at a time”.

PhD student Simon Salleh Atri describes their research: “We are developing new methods to slide the layers into different arrangements and study the resulting materials. By applying an electric field or mechanical pressure, we can shift the layers into various stable configurations. Since these layers remain in their final position even after the external force is removed, they can store information—functioning as a tiny memory unit”.

A New World of Materials Emerges, Layer by Layer

Their team has also explored how different numbers of layers influence material properties. For example, three layers of a material with two types of atoms can create six distinct stable materials, each with unique internal polarizations. With five layers, this number increases to 45 different possible structures. By switching between these configurations, researchers can control electrical, magnetic, and optical properties. Even graphite, composed solely of carbon, can rearrange into six different crystalline forms, each with distinct electrical conductivities, infrared responses, magnetizations, and superconducting properties.

The main challenge is maintaining the material’s stability while ensuring controlled structural transitions. Their recent perspective paper summarizes ongoing studies and proposes new methods to refine this “Slidetronics” switching mechanism, paving the way for innovative applications in electronics, computing, and beyond.

With continued research, these sliding materials could revolutionize technology, offering faster, more efficient memory storage and unprecedented control over material properties. The ability to manipulate atomic layers with precision is opening doors to a new era in material science—one where the most valuable discoveries may not come from creating gold, but from unlocking the hidden potential of everyday elements.

Related posts

TAU Scientist Featured on Nobel Prize Prediction List

29 September 2024

Turning Organic Waste to Tomorrow’s Fuel

18 August 2024

Could Restarting Change the Game for Chemical Research?

17 March 2024

Could Restarting Change the Game for Chemical Research?

12 February 2024

New Findings About the Early Universe 50 Million Years After the Big Bang

19 December 2023

Sam Altman to Visit Tel Aviv University

31 May 2023

Plants Emit Sounds – Especially When Stressed

1 April 2023

Munich Philharmonic Names Lahav Shani its Next Chief Conductor

27 February 2023

First Satellite Observatory for Quantum Optical Communication in Israel

16 February 2023

Does a Food Sharing Economy Benefit the Environment?

14 February 2023

Researchers Characterize Earliest Galaxies in the Universe

4 December 2022

The Thinnest Possible Ladder

21 November 2022

TAU Students Team Wins 1st Place in Int’l Mathematics Competition

12 September 2022

Can Music Help Prevent Severe Cognitive Decline?

1 September 2022

New Perspectives on Tackling Human Trafficking

28 July 2022

Impressive achievement for Tel Aviv University in the Bar Association Exam

17 July 2022

Victoria

Tok Corporate Centre, Level 1,
459 Toorak Road, Toorak VIC 3142
Phone: +61 3 9296 2065
Email: [email protected]

New South Wales

Level 22, Westfield Tower 2, 101 Grafton Street, Bondi Junction NSW 2022
Phone: +61 418 465 556
Email: [email protected]

Western Australia

P O Box 36, Claremont,
WA  6010
Phone: :+61 411 223 550
Email: [email protected]