Skip to main content

First of Its Kind: mRNA Drugs Delivered Straight to the Gut

Written on |

Potential new therapy for Crohn’s, colitis, and other inflammatory diseases.

Researchers at Tel Aviv University have achieved a breakthrough in drug delivery: they have successfully transported lipid nanoparticles encapsulating messenger RNA (mRNA) to the immune system of the small and large intestines — bypassing the liver upon systemic administration. By simply altering the composition of the nanoparticles, the researchers demonstrated that mRNA-based drugs can be directed straight to target cells, avoiding the liver.

The groundbreaking Tel Aviv University study was led by post-doctoral fellow Dr. Riccardo Rampado together with Vice President for R&D Prof. Dan Peer, a pioneer in the development of mRNA therapeutics and Director of the Laboratory of Precision Nano-Medicine at the Shmunis School of Biomedicine and Cancer Research. The study was published on the cover of the prestigious journal Advanced Science.

Prof. Dan Peer.

Targeting Drugs More Precisely with Lipid Nanoparticles

“Everything injected into the bloodstream eventually ends up in the liver — that’s just how our anatomy works”, explains Prof. Peer. “This poses two challenges. First, drugs intended to target specific cells in particular organs may be toxic to the liver. Second, we don’t want drugs to get ‘stuck’ in the liver. Ideally, the drug would reach the target organ first, and any remnants would then break down in the liver. We discovered that altering the proportions of lipids comprising the nanoparticles determines their destination in the bloodstream. This is a general phenomenon, meaning it works regardless of the specific lipids, which makes this a significant breakthrough”.

To demonstrate the concept, Prof. Peer and his team encoded the anti-inflammatory protein interleukin-10 into mRNA, encapsulated it in lipid nanoparticles with a composition different from those typically used (such as in mRNA COVID-19 vaccines), and successfully delivered it to the intestines of animal models with Crohn’s disease and colitis via intravenous injection.

“Not only were we able to deliver an mRNA-based anti-inflammatory drug directly to the inflamed intestine and improve all markers of colitis and Crohn’s disease, but we also transformed the immune cells in the intestine into factories for producing the anti-inflammatory interleukin-10”, Prof. Peer explains. “But this is just a proof of concept study. By tweaking the nanoparticle composition, we could deliver other RNA-based drugs to different organs. There’s a saying in American English: ‘It’s all in the formulation’. That’s exactly what this is about”.

Higher Phospholipids, Faster Delivery

In general, lipid-based drugs are encased in synthetic lipid nanoparticles, which mimic biological membranes. One of these lipids is phospholipid named phosphatidylcholine, a component found in all biological membranes. In vaccines like the COVID-19 vaccine, the mRNA is encapsulated in lipid particles containing about 10% of this phospholipid. Prof. Peer and his team increased the phospholipid ratio to 30% and demonstrated that this adjustment caused the particles to float through the bloodstream like oil on water.

“That’s the whole trick”, Prof. Peer concludes. “We adjusted the lipid composition and found that at 30% phospholipid, the drug is directed straight to the intestine. Of course, this wasn’t a blind trial-and-error approach. We understand the mechanism, at least partially, and recognize that this ratio more closely resembles a natural biological membrane, which intestinal cells are better suited to absorb. Now, we are exploring further adjustments to target the pancreas and other organs that can only be reached by fine-tuning the lipid nanoparticle composition. This direct delivery method for mRNA drugs opens up broad possibilities for developing new and more precise therapies than ever before”.

Related posts

What Happens When the Brain Learns Two Behaviors at Once?

29 December 2024

GPS for Cancer: Directing Drugs to the Tumor

23 December 2024

Is Treatment for Genetic Autism on the Horizon?

25 November 2024

Nasal Spray Revolutionizes COVID Protection

21 November 2024

Is There a Way to Stop Parkinson’s Disease at Its Source?

14 November 2024

How Does the Brain Keep Calm?

14 November 2024

Hyperbaric Oxygen Therapy: A Promising Treatment for PTSD Symptoms

11 November 2024

TAU Breakthrough Reveals Mechanism That Eliminates Tumors

3 November 2024

Could Cancer Vulnerabilities Be Hidden in Chromosome Changes?

23 September 2024

Spotting Parkinson’s Early: A New TAU Breakthrough

17 September 2024

How Can We See Through Closed Eyes?

16 September 2024

Can Parkinson’s Treatment be Enhanced by AI Tech?

1 September 2024

Want to Fall in Love? Step Outside in The Sun

19 August 2024

Can Smartwatches Prevent Pandemic Outbreaks?

7 August 2024

How Close Are We to Thought-Based Communication?

22 July 2024

Will Wearable Tech Transform Neurological Diagnosis?

21 July 2024

Victoria

Phone: +61 3 9296 2065
Email: [email protected]

New South Wales

Phone: +61 418 465 556
Email: [email protected]

Western Australia

Phone: :+61 411 223 550
Email: [email protected]