Skip to main content

New Pulsed Electric Field Technology Could Allow for Less Invasive Tumor Molecular Profiling

Written on |
Electroporation bears less of the negative consequences of biopsies, say TAU, IDC, Technion researcher Current cancer treatment courses often begin with tissue biopsies. Biopsies, however, which involve the physical resection of a small tissue sample, can lead to localized tissue injury, bleeding, inflammation, and stress, as well as increased risk of metastasis. New technology developed by a team of researchers from Tel Aviv University (TAU), Herzliya Interdisciplinary (IDC), and Technion–Israel Institute of Technology may soon offer an alternative means of profiling tissues. The research finds that electroporation — the application of high voltage pulsed electric fields to tissues — enables minimally invasive extraction of RNA and proteins that reveal tissue-specific differential expression critical to molecular profiling. “Our new method can enhance the information surgeons obtain from biopsy, for example,” explains Prof. Alexander Golberg of TAU’s Porter School of Environment and Earth Sciences, a lead author of the study. “By harvesting molecules from suspicious areas, this method enables improved diagnostics of the site and produces information pertinent to treatment decisions, including molecular biomarkers.” Research for the study was conducted by TAU graduate student Julia Sheviryov, Dr. Oz Solomon of IDC, Leon Anavy of the Technion, and Prof Zohar Yakhini from IDC and the Technion. The research was published in Scientific Reports on October 31. By extracting tissue-specific molecules using a combination of high-voltage and short pulses applied to specific sites, the technology enables profiling RNA, proteins, or metabolites in tissue and tissue environments. This can improve the accuracy of tumor diagnostics, including the potential response to different therapies. For the research, the scientists used electroporation to extract proteins and RNA from several normal human tissues, including liver tissues, and from a liver cancer model in mice. They then used advanced bioinformatics tools to demonstrate that tissue types can be distinguished by identifying specific molecules in the extracted samples. “Further in vivo development of extraction methods based on electroporation can drive novel approaches to the molecular profiling of tumors and tumor environments, and thereby to related diagnosis practices,” Prof. Golberg concludes. “Now we have a new method with which to sample tissue in vivo. We can sample molecules without extracting cells and without the risky excision of tissue parts.” The researchers now plan to develop a device for local extraction, thus enabling tumor heterogeneity mapping and the in vivo probing of tumor environment molecular composition.

Related posts

Is There a Way to Stop Parkinson’s Disease at Its Source?

14 November 2024

How Does the Brain Keep Calm?

14 November 2024

Hyperbaric Oxygen Therapy: A Promising Treatment for PTSD Symptoms

11 November 2024

TAU Breakthrough Reveals Mechanism That Eliminates Tumors

3 November 2024

Could Cancer Vulnerabilities Be Hidden in Chromosome Changes?

23 September 2024

Spotting Parkinson’s Early: A New TAU Breakthrough

17 September 2024

How Can We See Through Closed Eyes?

16 September 2024

Can Parkinson’s Treatment be Enhanced by AI Tech?

1 September 2024

Want to Fall in Love? Step Outside in The Sun

19 August 2024

Can Smartwatches Prevent Pandemic Outbreaks?

7 August 2024

How Close Are We to Thought-Based Communication?

22 July 2024

Will Wearable Tech Transform Neurological Diagnosis?

21 July 2024

Will Existing Drugs Stop Cancer’s Bone Spread?

19 May 2024

Heart Disease’s Cancer Link Unveiled

14 April 2024

Do Green Environments Help Heart Patients Live Longer?

4 April 2024

TAU Receives $12.67M Grant for Medical Simulation Center

1 April 2024

Victoria

Tok Corporate Centre, Level 1,
459 Toorak Road, Toorak VIC 3142
Phone: +61 3 9296 2065
Email: [email protected]

New South Wales

Level 22, Westfield Tower 2, 101 Grafton Street, Bondi Junction NSW 2022
Phone: +61 418 465 556
Email: [email protected]

Western Australia

P O Box 36, Claremont,
WA  6010
Phone: :+61 411 223 550
Email: [email protected]