Tag: AI

Saving Lives with Artificial Intelligence

New technology will identify patients at risk for serious illness before they become symptomatic.

Blood infections are one of the leading causes of morbidity and mortality in the world. The body’s immunological response to the infection can cause sepsis or shock, dangerous conditions that have high mortality rates. Thus, it is very important to identify the risk factors for developing serious illness at the early stage of infection. A new technology developed at Tel Aviv University will make it possible, using artificial intelligence (AI), to identify patients who are at risk of serious illness as a result of blood infections.

The researchers trained the AI program to study the medical records of about 8,000 patients at Tel Aviv’s Ichilov Hospital who were found to be positive for blood infections. These records included demographic data, blood test results, medical history and diagnosis. After studying each patient’s data and medical history, the program was able to automatically identify patients at risk of serious illness with an accuracy of 82%, even when ignoring obvious factors such as the age of the patients and the number of hospitalizations they had endured. According to the researchers, in the future this model could even serve as an early warning system for doctors.

Potential to Save Many Lives

Behind this groundbreaking research, with the potential to save many lives, are students Yazeed Zoabi and Dan Lahav from the laboratory of Prof. Noam Shomron of Tel Aviv University’s Sackler Faculty of Medicine, in collaboration with Dr. Ahuva Weiss Meilik, head of the I-Medata AI Center at Ichilov Hospital, Prof. Amos Adler, and Dr. Orli Kehat. The results of the study were published in the journal Scientific Reports.

“We worked with the medical files of about 8,000 Ichilov Hospital patients who were found to be positive for blood infections between the years 2014 and 2020, during their hospitalization and up to 30 days after, whether the patient died or not,” explains Prof. Noam Shomron. “We entered the medical files into software based on artificial intelligence; we wanted to see if the AI would identify patterns of information in the files that would allow us to automatically predict which patients would develop serious illness, or even death, as a result of the infection.”

Cooperation between Researchers and Hospitals

“Using artificial intelligence, the algorithm was able to find patterns that surprised us, parameters in the blood that we hadn’t even thought about taking into account,” says Prof. Shomron. “We are now working with medical staff to understand how this information can be used to rank patients in terms of the severity of the infection. We can use the software to help doctors detect the patients who are at maximum risk.”

Since the study’s success, Ramot – Tel Aviv University Tech Transfer Company, is working to register a global patent for the groundbreaking technology. Keren Primor Cohen, CEO of Ramot, says, “Ramot believes in this innovative technology’s ability to bring about a significant change in the early identification of patients at risk and help hospitals reduce costs. This is an example of effective cooperation between the university’s researchers and hospitals, which improves the quality of medical care in Israel and around the world.”

Featured image: Prof. Noam Shomron (Photo: Corinna Kern)

Exploring New Frontiers in AI

With the global artificial intelligence market skyrocketing, TAU’s new Center for AI and Data Science leads the way in Israel—and beyond.

The endless possibilities of artificial intelligence (AI) have ignited human imagination for decades. From Star Wars and Blade Runner to the recent Superintelligence, people have imagined a world powered by AI. And although those realities are still in the realm of the future, AI and machine learning are quickly becoming the next frontiers for academic institutions such as Tel Aviv University as well as businesses and governments. With the global AI market expected to grow to $800 billion annually in the coming years, former Israeli Prime Minister Benjamin Netanyahu tasked two Tel Aviv University professors with leading the National Initiative for Secured Intelligent Systems. They are Major Gen. (Ret.) Prof. Isaac Ben-Israel, Head of the Blavatnik Interdisciplinary Cyber Research Center (ICRC), and Prof. Eviatar Matania, Head of TAU’s Security Studies program. The pair’s resulting report recommends making AI a top national priority and is a blueprint for positioning Israel as a top five global AI superpower in the coming decade. TAU has already taken a leadership role in advancing AI in Israel with its annual AI Week Conference. At the February 2021 conference, which took place virtually, TAU’s Prof. Meir Feder announced the launch of a new interdisciplinary Center for Artificial Intelligence and Data Science, which he heads. “By deepening and disseminating AI expertise, the new Center will boost Israel’s flourishing high-tech and biotech industries and impact all aspects of life. It will create new opportunities in many fields including personalized medicine, drug design, social sciences, neuroscience, materials science and digital humanities,” says Feder. “In addition, the Center will enable all TAU students, no matter what they study, to gain a basic education in AI and Data Science. We will do this by building a curriculum that exposes them to AI concepts, to be implemented in the upcoming academic year.” AI, which revolves around the quest to build machines that can execute human-like tasks and behavior and beyond, has been a “holy grail” for scientists for many years, says Prof. Amir Globerson of the Blavatnik School of Computer Science and a member of the AI Center’s academic management team. “Almost every aspect of our daily lives can and will be changed by these emerging technologies” says Globerson. These include the way we clean our homes, receive health care or drive a car to the way we predict natural disasters.” To use AI technologies in real-world solutions, AI research must be an interdisciplinary effort, he explains. This means combining core disciplines of engineering, statistics and computer science with complementary fields such as law, medicine, psychology, economics and humanities. “It is essential for us to build up the capabilities of the Center to help researchers fulfill the potential of AI in all of these fields,” he says.   Prof. Amir Globerson (Photo: Moshe Bedarshi)

TAU: Multidisciplinary AI Powerhouse

With its influential group of researchers in core AI, TAU is already considered a world leader in the field, with strong performances in terms of prestigious grants, publications in top journals and industry ties. Collaborative AI projects in the TAU pipeline include developing automated tools for analyzing crop growth to help farmers in Africa improve yield; processing vast amounts of data to understand genome patterns and sources of diseases; and studying communication between caregivers and infants to recognize patterns that can facilitate better language development. TAU also has a relationship with Russia’s largest technology company, Yandex, which founded the Yandex Initiative for Machine Learning to strengthen AI and machine learning among TAU students and faculty, Globerson notes. He adds that the University views educating the next generation of researchers and technologists in this field as a priority. Recently, the “AI for Social Good” initiative, funded by Google at TAU’s AI Center, announced grants for 10 new interdisciplinary projects. The winning projects include: an early warning system for invasive fish species from the Red Sea into the Mediterranean Sea; a technical solution for ensuring fair use of copyrights online; and an image recognition system to allow Dead Sea Scroll scholars to compare old photographic images with new high-resolution spectral images of ancient scroll fragments.   Dead Sea scrolls (Photo: Shai Halevi)

AI and the War against COVID-19

During the COVID-19 pandemic, Prof. Irad Ben-Gal, head of TAU’s AI, Machine Learning, and Business & Data Analytics lab, collaborated with Dr. Dan Yamin, both of The Iby and Aladar Fleischman Faculty of Engineering, to correlate human mobility with outbreak patterns. They used AI mapping technology to determine ideal implementation of movement restrictions. For example, they designed a system to optimize the lockdown structure in a smart city according to the movement of people, instead of shutting down an entire metropolis such as Tel Aviv. Moreover, by using data collected from groups of 50 people—either through car sensors or mobile-phone tracking—rather than individuals, they protected people’s privacy.  Though the system was never fully implemented, both the Prime Minister’s Office and the Health Ministry used the data compiled by the TAU researchers to gauge reactions to those lockdowns, says Ben-Gal, who co-heads the Koret Program for Smart Cities and Digital Living in collaboration with Stanford University and serves as a Board Member of TAU’s Shmeltzer Institute of Smart Transportation. Modeling human mobility patterns can optimize a city’s allocation of smart utilities such as electricity, lighting systems and transportation routes, Ben-Gal explains. “In Israel, this modeling has been used for placement of mobile missile shelters, using data collected during missile attacks in the South to indicate where people were concentrated.”

A Game-Changer for Biomedicine

As head of the Functional Genomics Laboratory at TAU’s Sackler Faculty of Medicine, Prof. Noam Shomron also uses AI and machine learning to better lives. He does this by exploring new aspects of genomics through DNA and RNA research. In one study, his lab followed thousands of pregnant women from their 10-week blood tests through to the end of their pregnancy, when a small percentage of women suffer from the life-threatening condition of preeclampsia. Though physicians can sometimes predict the possibility of preeclampsia based on high blood pressure or stress, Shomron’s lab reduced 20 million possible RNA molecular markers for preeclampsia to only 25. He accomplished this by using AI and data methods to analyze RNA snippets in blood samples both of women who suffered from preeclampsia and those who didn’t. “Using this data, you can predict to a certain probability at the beginning of a pregnancy if a woman will suffer from preeclampsia later on. With this knowledge, you can prescribe early preventive treatment, which is a low dosage of aspirin—a simple remedy that can save lives,” says Shomron. Using the same blood samples, his lab computationally separated the embryonic DNA from the mother’s DNA. Applying AI-based algorithms, the team was then able to decipher the entire DNA of an embryo using just a blood sample from a woman at week 10 of her pregnancy. This testing method could be an effective alternative to amniocentesis, an invasive prenatal testing method which uses a needle to remove fluid from the uterus, and other similar tests. Cooperation with physicians from among TAU’s 17 affiliated hospitals has been vital to his team’s research, Shomron says. “We work closely with clinical teams who will eventually use the data and need to trust it,” he says. “Algorithms won’t replace clinical teams, but they will assist them in their decision-making.”

Advances for the Justice System

In addition to revolutionizing health care, education and transportation, AI technology is also transforming the legal world, says TAU’s Prof. Niva Elkin-Koren of The Buchmann Faculty of Law. For more than two decades, Elkin-Koren has been studying the implications of digital technology and AI on the legal sphere. Lawyers already use machine learning systems to predict damages and analyze what lower courts say about an issue, says Elkin-Koren, who is a member of the academic management team of the AI Center. Some judges in the US have begun to use AI risk-assessment systems to support their decision-making process when determining whether to release criminal offenders or impose criminal sanctions. “I am excited about these new opportunities, but also uneasy because in the absence of sufficient safeguards, they could lead to infringements on democracy and civil rights,” she says. “Lawyers are accustomed to thinking in terms of legal concepts, rules, rights and procedures. We have to start thinking of new procedures and legal protections that are more appropriate for this time and age.” For instance, she says, as police begin to depend more on predictive policing to justify a search —wherein they use computational algorithms based on compiled data to predict whether a person is about to commit a crime—tools must be developed to safeguard civil rights. This requires close collaboration among the lawyers, social scientists, and AI specialists developing these systems; together, they must ensure that the AI systems meet ethical standards and promote societal good, Elkin-Koren explains. A major challenge, she continues, is to assure AI systems are inclusive of minorities and marginalized populations. Learning models are typically based on historical data, which may lead to unintended biases. Her research involves redesigning systems in law and AI to include checks and balances starting from the creation stage, as a means of protecting citizens’ civil rights. Other issues the law must tackle with AI technology, according to Elkin-Koren, are ownership of AI output, regulation of copyrighted material, liability for harm caused by autonomous cars in accidents, and moderation of online speech. Finding the answers to these questions involves revising existing legal doctrines, but also responding to new theoretical challenges about legal agency and collective action.   Prof. Niva Elkin-Koren (Photo: Moshe Bedarshi) Shomron says the same is true in his field of medicine; as society evolves, he says, TAU researchers must continue to study and find ways to respond to emerging challenges. “Our world is changing all the time so we’re always looking at the next frontier,” he says. “That is what we do in academia: We try to invent the future.” By Judith Sudilovsky Featured image: Prof. Noam Shomron (right) discusses test results with MDPhD candidate Yazeed Zoabi (left) and doctoral candidate Meitar Grad in his medical genomics lab. (Photo: Yoram Reshef)

Google and TAU to Harness the Power of AI for Social Good

Google and Tel Aviv University recently launched a three-year program for promoting AI-related multidisciplinary research for the benefit of society. The program aims to support research and collaborations in Data Science and Artificial Intelligence, that can advance humanity by addressing focal social issues on the global agenda. It was launched within the framework of TAD, the TAU Center for Artificial Intelligence and Data Science, established in February and headed by Prof. Meir Feder of The Iby and Aladar Fleischman Faculty of Engineering. The program was launched at a recent ceremony at TAU, announcing 10 winners – out of 27 proposals submitted in response to TAU and Google’s joint call. Seven of the winning projects are supported by Google. The grant winners, whose projects address different aspects of AI for Social Good, include researchers from a wide range of disciplines: Zoology (Faculty of Life Sciences), Electrical Engineering, Economics, Statistics, Communication Disorders, Biblical Studies, Earth Sciences and Computer Science, Sociology and Anthropology and more.

Bridging Disciplines to Make Good Things Happen

TAU President Prof. Ariel Porat, who aims to establish ‘bridges’ between the different disciplines studied at TAU, said at the ceremony: “I share a common vision with Prof. Yossi Matias. We believe that AI researchers can benefit significantly from collaborations with researchers in the social sciences and humanities, just as the latter benefit from new developments in AI. I am very happy about our partnership with Google. I look forward to seeing its fruits and hope to expand it further in the future.” Prof. Yossi Matias, VP at Google and Managing Director of Google Center in Israel, spoke of AI technologies and how they are already improving our lives dramatically: “AI already has great impact in various areas. We are delighted for this opportunity to harness the power of AI for social good and for science. Google is especially happy about its work on beneficial and even lifesaving products, such as the worldwide project for accurate flood forecasting, a technology enabling the hearing-impaired to conduct phone conversations, and studies on the use of AI to enhance disease diagnosis.” Prof. Matias thanked Prof. Porat, Prof. Meir Feder, Head of the TAD Center, and all other partners in the initiative. He spoke of the special opportunity to generate collaborations between researchers, and noted that he is a great believer in connections between different disciplines. “There are some deep and fascinating research questions associated with AI in many different disciplines, creating substantial opportunities for collaboration. Good things happen when different ideas and different approaches come together.”   Left to right: Prof. Yossi Matias, Prof. Ariel Porat, Prof. Meir Feder & Prof. Tova Milo The joint venture will include a joint seminar on Machine Learning (ML), led by TAD Director Dr. Shimon (Moni) Shahar and Dr. Deborah Cohen, a scientist at the new Google Center in Israel. Prof. Meir Feder emphasized that “the AI revolution is expected to impact every aspect of our lives, from drug development and data-based personalized medicine, to defense systems, financial systems, scientific discoveries, robotics, autonomous systems and social issues. In addition, it is very important to train human capital in this area, and therefore the Center will provide every student at TAU with a basic AI education. TAU is special in having researchers who specialize in basic science and AI, as well as researchers who apply AI in the humanities and social sciences. We are happy that Google has decided to join forces with TAU in this important matter. The collaboration with Google will enable utilization of the power of AI and Data Science, channeling it toward the benefit of society.”

TAU Launches Israel’s First Center for AI and Data Science

Center to take TAU and Israel to forefront of the global artificial intelligence revolution.

Tel Aviv University launched the new, interdisciplinary Center for Artificial Intelligence and Data Science today, headed by Prof. Meir Feder of the Fleischman Faculty of Engineering.

The Center will enhance basic science in these fields, encourage cross-disciplinary research that uses the most advanced methods of artificial intelligence (AI) and data science (DS), and train a new generation of researchers and industrialists who will take Israel to the forefront of the global AI revolution in the coming years. Moreover, it will lay the groundwork for the rapidly growing field of quantum computing. The launch event took place during TAU’s annual AI Week.

Penetrating All Areas of Life

TAU President, Prof. Ariel Porat: “The establishment of the AI Center is one more step toward implementing TAU’s vision for advancing groundbreaking, interdisciplinary research that brings together the university’s finest researchers, the high-tech industry and the community. Not long ago we launched the interdisciplinary Center for Combating Pandemics and over the coming year we intend to establish more such centers, such as one for climate change and another for healthy aging. TAU’s great advantage is its enormous range of disciplines. Our new interdisciplinary centers will further extend the scope of research, combining different disciplines, from engineering and computer science through life sciences, medicine and psychology, to economics, management, humanities, arts and law.”

Prof. Meir Feder emphasized that “the AI revolution is expected to impact our way of life in every aspect, from drug development and data-based personalized medicine, to defense and security systems, financial systems, scientific discoveries, robotics, autonomous systems and social issues. In addition, it is very important to train human capital in this area, and therefore the Center will provide all TAU students with basic AI education.” According to Prof. Feder, the Center will include hundreds of researchers, and will promote collaborations among scientists all over campus. It will also foster collaborations with the defense and other industries, the public sector, and leading universities and research institutions around the world.

Prof. Feder added that next month the AI Center will launch its collaboration with Google Israel as part of the company’s “AI for Social Good” program.

Major Gen. (Ret.) Prof. Isaac Ben-Israel, Head of TAU’s Yuval Ne’eman Workshop for Science, Technology and Security and Blavatnik Interdisciplinary Cyber Research Center, and Prof. Eviatar Matania, also of Tel Aviv University, are the visionaries behind AI Week and the university-wide AI initiative.

Prof. BenIsrael stressed that “the applications of intelligent systems have far-reaching implications for practically every area of modern life, including security, medicine, transportation, automation, retail, customer service and numerous others. Various AI and machine learning algorithms, together with the enormous increase in computational power, are already beginning to penetrate all areas of our lives, and understanding them requires proficiency not only in the obvious technological disciplines such as computer science, mathematics and engineering, but also in the social, legal, business and even philosophical spheres.”

Israel’s Premier Artificial Intelligence Event is Back!

TAU’s AI Week brings together top Israeli and global experts in the field for three fascinating days, Feb 22-24.

It is time for TAU’s annual International Conference on Artificial Intelligence (AI), continuing our tradition of gathering prominent figures who address the most significant issues in the field with technology experts, industry executives, and government representatives.

Combining technological leadership, applied AI and cutting-edge research, AI Week will highlight the way in which AI technology is revolutionizing business strategy, policy and future development. Discussions will focus on formulating national plans for the advancement of AI, the use of AI in medicine and implementing AI to advance the economy in a post corona world.

Speakers include: Prof. Isaac Ben Israel (Head of the Yuval Ne’eman Workshop on Science, Technology and Security, Head of the Cyber ​​Center at Tel Aviv University), Sumaya AlHajeri (Head of Governance and Data at the Office of the Minister of Artificial Intelligence, UAE), Sana Khareghani (Head of UK Office for Artificial Intelligence), Carme Artigas (Secretary of State for Digitalization and Artificial Intelligence, Spain), Dr. Eviatar Matania (Former Director General, Israel National Cyber Directorate) and more.

The conference program can be viewed here.

Participation is free of charge, but requires registration in advance. Please register here.

TAU makes schizophrenia diagnosis easier with AI

TAU Computer Science master’s student Vered Zilberstein applies machine learning to identify schizophrenics

Tel Aviv University student, Vered Zilberstein, pursuing an MSc in Computer Science at the Blavatnik School of Computer Science, has co-led a study that will help detect schizophrenia patients using artificial intelligence.

She and her research partners applied a machine learning algorithm that identified which study participants were afflicted by schizophrenia and which were not.

 “We used participant scores in a language experiment to train a machine learning classifier to differentiate between schizophrenia patients and a control group of the same sex and age. It managed to do it at an 81.5% accuracy rate,” says Zilberstein, “This procedure is done through a sub-area called natural language processing.”

Collaborating with Beer Yaacov Mental Health Center, Zilberstein set out to explore how AI and computing can assist in the world of mental health – specifically in dealing with schizophrenia.

The disorder is very tricky to diagnose and is characterized by abnormal behavior, speech impairments and a diminished ability to understand reality.

Examples of thought and language disorders characterizing people with schizophrenia include jumping between unrelated issues, called “derailment,” while engaging in conversation. “Tangentiality” occurs when a sufferer replies to a question in an oblique and irrelevant manner. Grammatical mistakes and incoherent, illogical speech are also among the symptoms.

“However,” says Zilberstein, “you need to be very skilled to succeed in identifying speech difficulties affecting schizophrenia sufferers as well as those affecting other groups, such as people on the autistic spectrum.”

Zilberstein’s study included two experiments which examined two types of thought disorders. One focused on derailment, which is dissociative weakness. “It means that one is jumping from one subject to another during a conversation,” explains Zilberstein, “for example, someone can say: ‘I’ve always liked geography. My last teacher in that subject was Prof. August A. He was a man with black eyes. I also like black eyes. There are blue and grey eyes and other sorts too…’ and so on. You can clearly see that they jump very quickly between subjects and by the end of the sentence they have completely derailed from the initial topic, which was geography.”

The other experiment focused on incoherence caused by peculiar vocabulary and incorrect grammar. It is hard to understand what is meant. For example: “Oh, it was superb, you know, the trains broke, and the pond fell in the front doorway.”

Both experiments utilized interviews, questionnaires and photo descriptions. They involved 24 male patients affected by schizophrenia aged 30-40 and 27 mentally healthy males, serving as a control group.

The test results showed that, predictably, the control group tended to maintain focus on the conversation topics whereas the patients were more inclined to changing the subject. More important, it was the machine learning algorithm that could analyze and identify who was whom.

As a computer science master’s student, who comes from the world of exact sciences, what draws you to the world of mental health?

“I wanted to be involved in a combination of disciplines, and not only computer science. I wanted to write a thesis based on real data.”

How widespread, if at all, is the intertwining of artificial intelligence and mental health?

“While artificial intelligence gathers pace in the academic, industrial, educational and social media worlds, combining computer science and mental health is still very much in its infancy. However, artificial intelligence is inevitably going to affect almost all aspects of our lives.

“My study examined the way patients and healthy people talk but further studies may explore and compare between the way patients and healthy people write, for example on social media, which is what I intend on looking into in my research going forward.”

Victoria

Tok Corporate Centre, Level 1,
459 Toorak Road, Toorak VIC 3142
Phone: +61 3 9296 2065
Email: office@aftau.asn.au

New South Wales

P.O. Box 4044, Maroubra South,
NSW 2035
Phone: +61 418 465 556
Email: davidsolomon@aftau.org.au

Western Australia

P O Box 36, Claremont,
WA  6010
Phone: :+61 411 223 550
Email: clivedonner@thelinqgroup.com