Skip to main content

Tag: Engineering

Is Treatment for Genetic Autism on the Horizon?

New study reveals brain mechanisms involved in genetically based autism which may lead to effective treatment

A groundbreaking study from Tel Aviv University expands the understanding of the biological mechanism underlying genetically-based autism, specifically mutations in the SHANK3gene, responsible for nearly one million cases of autism worldwide. Based on these discoveries, the research team applied a genetic treatment that improved the function of cells affected by the mutation, laying a foundation for future treatments for SHANK3-related autism.

The study was led by the lab of Prof. Boaz Barak and PhD student Inbar Fischer from the Sagol School of Neuroscience and the School of Psychological Sciences at Tel Aviv University, in collaboration with the labs of Prof. Ben Maoz from the Department of Biomedical Engineering at Fleischman Faculty of Engineering at Tel Aviv University and Prof. Shani Stern from the Department of Neurobiology at the University of Haifa. The article was published in the prestigious journal Science Advances.

PhD student Inbar Fischer.

Prof. Barak: “Autism is a relatively common neurodevelopmental disorder. According to current data, 1-2% of the global population and one in every 36 boys in the U.S. are diagnosed with autism spectrum disorder (ASD), with numbers rising over time. Autism is caused by a wide range of factors – environmental, genetic, and even social and cultural (such as the rise in parental age at conception). In my lab, we study the genetic causes of autism. Among these are mutations in a gene called SHANK3. The impact of these mutations on the function of brain neurons has been extensively studied, and we know that the protein encoded by SHANK3 plays a central role in binding receptors in the neuron, essential for receiving chemical signals (neurotransmitters and others) by which neurons communicate. Thus, damage to this gene can disrupt message transmission between neurons, impairing the brain’s development and function. In this study we sought to shed light on other, previously unknown mechanisms, through which mutations in the SHANK3 gene disrupt brain development, leading to disorders manifested as autism”.

Specifically, the research team focused on two components in the brain that have not yet been studied extensively in this context: non-neuronal brain cells (glia) called oligodendrocytes and the myelin they produce. Myelin tissue is a fatty layer that insulates nerve fibers (axons), similar to the insulating layer that coats electrical cables. When the myelin is faulty, the electrical signals transmitted through the axons may leak, disrupting the message transmission between brain regions and impairing brain function.

How a Gene Mutation Impacts the Brain

The team employed a genetically engineered mouse model for autism, introducing a mutation in the Shank3 gene that mirrors the mutation found in humans with this form of autism. Inbar Fischer: “Through this model, we found that the mutation causes a dual impairment in the brain’s development and proper function: first, in oligodendrocytes, as in neurons, the SHANK3 protein is essential for the binding and functioning of receptors that receive chemical signals (neurotransmitters and others) from neighboring cells. This means that the defective protein associated with autism disrupts message transmission to these vital support cells. Secondly, when the function and development of oligodendrocytes is impaired, their myelin production is also disrupted. The faulty myelin does not properly insulate the neuron’s axons, thereby reducing the efficiency of electrical signal transmission between brain cells, as well as the synchronization of electrical activity between different parts of the brain. In our model, we found myelin impairment in multiple brain areas and observed that the animals’ behavior was adversely affected as a result”.

The researchers then sought a method for fixing the damage caused by the mutation, with the hope of ultimately developing a treatment for humans. Inbar Fischer: “We obtained oligodendrocytes from the brain of a mouse with a Shank3 mutation, and inserted DNA segments containing the normal human SHANK3 sequence. Our goal was to allow the normal gene to encode a functional and normal protein, which, replacing the defective protein, would perform its essential role in the cell. To our delight, following treatment, the cells expressed the normal SHANK3 protein, enabling the construction of a functional protein substrate to bind the receptors that receive electrical signals. In other words, the genetic treatment we had developed repaired the oligodendrocytes’ communication sites, essential for the cells’ proper development and function as myelin producers”.

To validate findings from the mouse model, the research team generated induced pluripotent stem cells from the skin cells of a girl with autism caused by a SHANK3 gene mutation identical to that in the mice. From these stem cells, they derived human oligodendrocytes with the same genetic profile. These oligodendrocytes displayed impairments similar to those observed in their mouse counterparts.

Autism and Myelin Damage: New Hope for Treatment

Prof. Barak concludes: “In our study, we discovered two new brain mechanisms involved in genetically induced autism: damage to oligodendrocytes and, consequently, damage to the myelin they produce. These findings have important implications – both clinical and scientific.  Scientifically, we learned that defective myelin plays a significant role in autism and identified the mechanism causing the damage to myelin. Additionally, we revealed a new role for the SHANK3 protein: building and maintaining a functional binding substrate for receptors critical for message reception in oligodendrocytes (not just in neurons). We discovered that contrary to the prevailing view, these cells play essential roles in their own right, far beyond the support they provide for neurons — often seen as the main players in the brain. In the clinical sphere, we validated a gene therapy approach that led to significantly improved development and function of oligodendrocytes derived from the brains of mice modeling autism. This finding offers hope for developing genetic treatment for humans, which could improve the myelin production process in the brain. Furthermore, recognizing the significance of myelin impairment in autism—whether linked to the SHANK3 gene or not—opens new pathways for understanding the brain mechanisms underlying autism and paves the way for future treatment development”.

Turning Organic Waste to Tomorrow’s Fuel

TAU’s new method turns raw wet waste into biofuels, potentially meeting a third of Israel’s marine fuel needs.

An innovative development by a team of Tel Aviv University researchers allows for converting the wet raw waste that we throw in the trash into liquid and solid biofuels, without the need to dry the waste. The researchers assess that at the national level, fuels produced from organic waste can, among other things, meet about a third of Israel’s marine fuel consumption.

The study was led by Prof. Alexander Golberg of Tel Aviv University’s Porter School of Environment and Earth Sciences and was published in the journal Energy Conversion and Management: X. The research was conducted by Ph.D. candidate Maya Mosseri in collaboration with engineer Michael Epstein, Prof. Michael Gozin of the School of Chemistry, and Prof. Avraham Kribus of the Fleischman Faculty of Engineering.

How Israel Handles Its Waste Crisis

Israel’s waste problem is escalating. In 2019, the country generated approximately 5.8 million tons of municipal waste, averaging about 1.76 kg per person per day — about 30 percent more than the European average. This figure increases every year by about 2.6 percent. Currently, about 80 percent of household waste in Israel ends up in landfills. Organic waste presents a significant challenge, harming the environment through greenhouse gas emissions, leachate formation, and the pollution of air, water, and soil, often accompanied by unpleasant odors.

The Research Team.

“Organic waste emits methane, which is a greenhouse gas, and also contaminates groundwater”, explains Prof. Golberg. “The treatment of waste is a critical issue. Landfill sites in Israel are reaching capacity, and despite the desire to reduce landfill to a minimum, we are forced to open new sites, because there is no other solution. The major advantage of our proposal is that we will reduce the need for so many landfill sites. Municipalities invest considerable funds on waste transportation and treatment, and this solution has the potential to significantly cut those expenses”.

To assess the potential of municipal waste in Israel, the researchers analyzed the results of a groundbreaking 2018 survey conducted by E. Elimelech et al. from the University of Haifa. The survey examined the composition of the garbage produced by 190 households in the city of Haifa over the course of a week. The findings revealed that measurable organic waste constitutes about 36.4 percent of food waste and about 16.4 percent of total household waste. The category of measured organic waste was further analyzed, showing that it comprised 67 percent fruits and vegetables, 14 percent breads, pastas and cereals, 8 percent eggs and dairy products, 5 percent by-products such as peels and skins, 3 percent meat, fish and poultry, 2 percent sweets and cookies, and 1percent soft drinks. In general this organic waste contains around 80% water.

Turning Trash into Treasure

“The results of this survey formed the basis for the waste model in our study,” says Prof. Golberg. “We built a continuous reactor — which will eventually be adaptable for solar energy usage — to heat the waste to 280 degrees Celsius, and we were able to significantly reduce the amount of water and oxygen in the biofuel. We found cost-effective catalysts that make it possible to control the ratio between the liquid and solid fuel products. Solid fuel can be used as biochar, effectively sequestering carbon dioxide for extended periods. The biochar can be burned in power plants like regular coal and liquid biofuels, and after upgrading, it can power planes, trucks, and ships”.

Using the representative model of the measured organic waste, the TAU researchers successfully produced liquid biofuel with a yield of up to 29.3 percent by weight and solid fuel with a yield of up to 40.7 percent based on dry raw material. This process is versatile and suitable for treating any wet organic waste or residue, for example, organic waste from food factories, institutional kitchens, and hospitals.

The researchers conclude: “The production of biofuels from organic waste components can significantly reduce the volume of municipal waste sent to landfills, thereby decreasing environmental pollution of soil, water, and air. Moreover, reducing landfilling will lower greenhouse gas emissions and decrease reliance on oil and coal. Converting waste into energy also offers a local solution for Israel’s energy independence and security”.

The researchers thank the chief scientist of the Israeli Ministry of Energy and the company Noga for their support of the research.

Can Smartwatches Prevent Pandemic Outbreaks?

Researchers Discover How Smartwatches Can Stop Disease Spread by Early Detection

Researchers from the Department of Industrial Engineering at TAU’s Faculty of Engineering led a two-year study in which participants wore smartwatches that measured biomarkers and answered questions about their health every day. The results indicate that the wearable technology identified a change in key physiological parameters one to three whole days before the user felt the first symptom of the disease: a gap of 23 hours for COVID-19, 62 hours for group A streptococcus (GAS), and 73 hours for influenza.

The researchers: “Early diagnosis enabled by wearable technologies can be critical for inducing behavioral changes, such as reduced social contacts at an early stage, when the disease is most infectious. Potentially, this can prevent the spread of disease and even preempt global pandemics in the future”.

The study was led by Prof. Dan Yamin, an expert in epidemiology and infectious disease modeling and Head of the Lab for Digital Epidemiology and Health Analytics, and Prof. Erez Shmueli, Head of the Big Data Lab, both from TAU’s Department of Industrial Engineering. Other participants included: research students Shachar Snir and Matan Yechezkel from the Department of Industrial Engineering, Dr. Tal Patalon from the Kahn Sagol Maccabi Research and Innovation Center at Maccabi Healthcare Services and Yupeng Chen and Prof. Margaret Brandeau from the Department of Management Science and Engineering at Stanford University. The paper was published in Lancet Regional Health Europe.  

Prof. Yamin: “Infectious diseases and pandemics pose a great threat to humanity, and we must harness our scientific and technological abilities to prevent them. Previous studies have shown that during the recent pandemic about 40% of all transmissions occurred about a day before the first symptoms appeared. In other words, the person transmitting the disease was unaware they were infected. In this study we checked whether wearable technologies could provide earlier diagnosis, to reduce contagion and prevent the spread of infectious diseases”.

Tracking Key Health Changes

During the two-year study, 4,795 Israelis over 18 years of age wore a smartwatch that continuously monitored key physiological parameters, focusing on pulse rate at a 15-second resolution and HRV (Heart Rate Variability). Prof. Yamin explains: “Pulse rate and HRV provide crucial information about the two most important systems in our body – the heart and the brain. Our brain constantly consumes energy, burning oxygen provided by the cardiovascular system, and consequently, any change in our activity or condition is immediately reflected in a change in HRV. When a person becomes ill, most of the focus goes to a single system – the immune system battling the disease, keeping the heart rate relatively steady, and reducing its variability, the HRV. In this way, changes in HRV indicate physical stress”.

In addition to wearing the smartwatches, participants answered a series of general questions about their condition every day: How do you feel physically? How do you feel mentally? Have you engaged in physical activity? Do you have any specific symptoms? Etc. In addition, they were provided with home test kits for three different diseases – COVID-19, influenza, and group A streptococcus – which they used at their discretion. Over two years, the researchers collected 800,000 questionnaires and this data was compared with parallel data from the smartwatch. Altogether, the data included 490 episodes of influenza, 2206 episodes of COVID-19, and 320 episodes of GAS.

Based on their abundant data, the researchers built special models that identified three critical points in time following exposure to an infectious disease. For instance, COVID-19: A. The first physiological anomaly in heart rate measures – 96 hours after exposure, an interval, which the researchers call the ‘digital incubation period’; B. The first symptom noticed by the person –130 hours after exposure, an interval commonly known as the ‘incubation period’; and C. Testing that ultimately diagnosed the disease – usually about 168 hours after exposure, called the ‘diagnostic decision period’. The period from exposure to digital diagnosis, namely the digital incubation period, was even shorter for influenza (24 hours) and GAS (60 hours).

Getting Ahead of the Curve?

Prof. Shmueli: “Early diagnosis is extremely important for preventing the spread of the disease. Moreover, we found that even when our subjects reported first symptoms, they tended to postpone testing for a while – 53 hours for COVID-19, 39 hours for influenza, and 38 hours for GAS. Consequently, for quite a long interval, from exposure to testing, they did not change their social behavior, spreading the disease to others. We found that on average, people performed the test and changed their behavior when the disease was already past its peak, and they were much less likely to infect others. The delay between digital diagnosis and testing – 64 hours in the case of COVID-19, 68 hours for influenza, and 58 hours for GAS – is thus extremely crucial”.

Prof. Yamin: “Our findings indicate that at the population level digital diagnosis can significantly reduce the spread of infectious diseases, by causing people to change their social behavior at a much earlier stage of the disease. This can even prevent the next pandemic – by bringing the basic reproduction number (R0value) to below 1.0, which means that every sick individual transmits the disease to less than one other person, and the disease soon dies out”.

The researchers add that early diagnosis is also critical for effective treatment. Specifically, for COVID-19, existing treatments are very effective only when given early on, preventing severe illness, hospitalization, and even death.

A Milestone in Stopping Pandemics

Prof. Yamin: “In an ERC-funded paper published in October 2019, shortly before the outbreak of the COVID-19 pandemic, I argued that infectious diseases pose the greatest threat of a global catastrophe. The threat is especially great in the modern world, with people traveling all over the globe and potentially spreading new diseases. However, modern technology can help us combat this danger and devise more effective public health strategies. Our new method, using wearable sensors for early detection of contagious disease can potentially reduce the threat of epidemics to a minimum. Smartwatches are a relatively new technology, with enormous potential, and novel, even more sensitive and accurate wearable sensors are constantly being developed. Ultimately, this can be a high-impact tool for preempting future pandemics”.

How a Brain Parasite Becomes a Brain Cure

TAU research paves the way to brain healing with parasites

Have you ever imagined that parasites could be beneficial for brain diseases? TAU Researchers have reengineered Toxoplasma gondii, the ‘cat parasite,’ transforming it from a feared threat into a groundbreaking tool for delivering drugs directly to the brain. This surprising innovation not only overturns our expectations but also opens new possibilities for treating neurological disorders.

In a breakthrough study by an international team of scientists led by researchers from Tel Aviv and Glasgow Universities, the ‘cat parasite’ Toxoplasma gondii was engineered to deliver drugs to the human brain. The study was led by Prof. Oded Rechavi from the Department of Neurobiology and the Sagol School of Neuroscience at Tel Aviv University, together with his PhD student Dr. Shahar Bracha, and with Prof. Lilach Sheiner, an Israeli scientist and toxoplasma expert from the University of Glasgow in Scotland. The results were published in the leading scientific journal Nature Microbiology.

“One of the biggest challenges in treating neurological diseases is getting through the blood-brain barrier (BBB),” explains Prof. Rechavi. “It is tough to deliver drugs to the brain via the bloodstream, and this is especially true for large molecules such as proteins, the critical ‘machines’ that carry out many important functions inside the cell”.

Toxoplasma gondii – the ‘cat parasite’

The creative solution proposed by the TAU team utilizes the unicellular parasite Toxoplasma gondii, which can infect a vast variety of organisms, but reproduces only in the guts of cats. The parasite is very effective in infecting humans, with an estimated third of the global population infected at some point in their lives. Prof. Rechavi explains: “Most people don’t even feel the infection or only experience mild flu-like symptoms.

Dormant Parasite Sparks New Treatment

The parasite is, however, dangerous for people with immune failure due to conditions like AIDS, and for fetuses whose immune system has not yet developed. This is why pregnant women are advised not to eat raw meat which might contain the parasite, and to stay away from cats, which might deliver it through their feces. While ridding the body of the parasite, a healthy immune system has only limited access to the brain, and the parasite remains in the brain throughout the carrier’s lifetime”.

The parasite’s ability to penetrate the human brain and survive there in a dormant state, without reproducing, made it a perfect candidate for the researchers’ novel approach: genetically engineering Toxoplasma gondii to secrete therapeutic proteins.

Can Parasites Deliver Medications to the Brain?

“The parasite has three distinct secretion systems and we ‘hitched a ride’ on two of them”, says Prof. Rechavi. “We did not intervene with the first system, which secretes proteins outside the neurons. The second system ‘shoots’ a ‘harpoon’ into the neuron, to enable penetration. Once inside, the parasite forms a kind of cyst that continues to secrete proteins permanently. We engineered the parasite’s DNA to make it produce and secrete the proteins we want, which have therapeutic potential”.

“The parasite’s ability to pass through the BBB and communicate with the neurons, combined with our ability to engineer the parasite, generate a golden opportunity for solving the great therapeutic challenge of delivering medications to the brain”, says Prof. Sheiner.

Illustration of the activity of neurons

In this study, the team used transgenic model animals that were injected with parasites genetically engineered to produce and secrete proteins that travel into cell nuclei. Several lines of evidence proved that the proteins had been delivered to the target area and remained active in the neurons’ nuclei. One of these was especially eye-catching: a protein that, delivered by the parasite, entered the nuclei and cut out specific DNA segments, causing the transgenic animals’ brains to glow in the dark.

New Method for Rett Syndrome

This breakthrough can have far-reaching implications for a series of severe diseases. In the present study, the researchers specifically demonstrated the delivery of a protein called MeCP2, whose deficiency is associated with Rett syndrome. “This is a deadly syndrome caused by a deficiency in a single gene called MePC2 in brain cells, and our engineered Toxoplasma gondii was able to deliver it to the target cells”, says Prof. Rechavi. “But this is just one example. There are many other diseases caused by deficiency or abnormal expression of a certain protein”. To ensure the method’s safe and effective therapeutic implementation, for both drug delivery and genetic editing, a company named Epeius was established in collaboration with Ramot – the technology transfer company of Tel Aviv University, and with the University of Glasgow’s research and innovation services.

Next-Level Drone Detection Could Enhance Airspace Protection

TAU research introduces smart tagging to identify and track drones in extreme weather conditions

A new development by researchers at the Faculty of Engineering at Tel Aviv University will help identify small drones in challenging scenarios, such as urban environments, low flight altitudes, and extreme weather conditions, enhancing the protection of airspaces via smart tagging. The research team notes that drone identification is generally conducted using radars, cameras, and transponders, with the latter providing real-time updates on location in civilian contexts. However, these methods can fail in harsh conditions, including limited line of sight, multiple air traffic participants, and tall buildings blocking satellite signals, among other challenges.

The researchers highlight that this new technology can overcome these challenges and provide a superior level of reliability by using smart stickers and a radar supported by an AI algorithm that classifies drones based on the electromagnetic radiation they scatter.

The development was led by Ph.D. students Omer Tzidki and Dmytro Vovchuk from Prof. Pavel Ginzburg’s lab, the Iby and Aladar Fleischman Faculty of Engineering. The lab specializes in developing novel radar and wireless communication technologies, facing new and forthcoming challenges.

Detecting Drones Beyond Sight

Omer Tzidki points out that the problem of identifying the drones is especially critical when there is no direct line of sight, for example when the drone is hidden behind a cloud, in fog, or hard to see due to adverse weather conditions. In these situations, cameras alone are insufficient, and the use of radar becomes necessary.

With this new development, identification is carried out through an electromagnetic representation of the drone’s “identity card”. This allows the radar to distinguish between drones with different IDs by using electromagnetic tagging on the drone’s wings. The AI algorithm, which relies on a neural network, classifies the drone as either friendly or hostile and operates successfully even in varying harsh conditions while minimizing the risk of accidents. Initial experiments were conducted under laboratory conditions in a sterile environment, followed by trials in an external setting to simulate real-world scenarios.

Prof. Pavel Ginzburg: “The simplest things often work best. This project leverages fundamental physical principles to reliably and accurately classify drones. The process of identifying any drone using radar is quite complex, so achieving the capability to identify specific drones is a significant accomplishment of which we are very proud”.

Omer Tzidki emphasizes that the combination of electromagnetic techniques, AI algorithms, and innovative radar technology yields optimal results. “Mapping the airfield is critical for protecting the lives of soldiers and civilians. This project is important at all times and especially crucial now”, he said.

Tel Aviv University Shatters Limits with Self-Repairing Glass

TAU researchers create transparent, self-repairing adhesive glass that forms in contact with water.

Researchers from TAU have created a new type of glass with unique and even contradictory properties, such as being a strong adhesive (sticky) and incredibly transparent at the same time. The glass, which forms spontaneously when in contact with water at room temperature, could revolutionize in an array of diverse industries such as optics and electro-optics, satellite communication, remote sensing and biomedicine. The glass has been discovered by a team of researchers from Israel and the world, led by PhD student Gal Finkelstein-Zuta and Prof. Ehud Gazit from the Shmunis School of Biomedicine and Cancer Research at the Faculty of Life Sciences and the Department of Materials Science and Engineering at the Faculty of Engineering at TAU. The research results were published last week in the prestigious scientific journal Nature.

“In our laboratory, we study bio-convergence and specifically use the wonderful properties of biology to produce innovative materials”, explains Prof. Gazit. “Among other things, we study sequences of amino acids, which are the building blocks of proteins. Amino acids and peptides have a natural tendency to connect and form ordered structures with a defined periodic arrangement, but during the research, we discovered a unique peptide that behaves differently from anything we know: it didn’t form any ordered pattern but an amorphous, disordered one, that describes glass”.

(Left to right) Gal Finkelstein-Zuta and Prof. Ehud Gazit.

Just Add Water

At the molecular level, glass is a liquid-like substance that lacks order in its molecular structure. Still, its mechanical properties are solid-like. Glass is usually manufactured by rapidly cooling molten materials and “freezing” them in this state before they are allowed to crystallize, resulting in an amorphous state that allows unique optical, chemical and mechanical properties – alongside durability, versatility, and sustainability. The researchers from TAU discovered that the aromatic peptide, which consists of a three-tyrosine sequence (YYY), forms a molecular glass spontaneously, upon evaporation of an aqueous solution, under room-temperature conditions.

“The commercial glass we all know is created by the rapid cooling of molten materials, a process called vitrification”, says Gal Finkelstein-Zuta. “The amorphous liquid-like organization should be fixed before it arranges in a more energy-efficient way as in crystals, and for that energy is required – it should be heated to high temperatures and cooled down immediately. On the other hand, the glass we discovered made of biological building blocks, forms spontaneously at room temperature, without the need for energy such as high heat or pressure. Just dissolve a powder in water – just like making Kool-Aid, and the glass will form. For example, we made lenses from our new glass. Instead of undergoing a lengthy process of grinding and polishing, we simply dripped a drop onto a surface, where we control its curvature – and hence its focus – by adjusting the solution volume alone”.

Solid peptide glass after preparation.

The properties of the innovative glass from TAU are unique in the world – and even contradict each other: it is very hard, but it can repair itself at room temperature; It is a strong adhesive, and at the same time, it is transparent in a wide spectral range, ranging from the visible light to the mid-infrared range.

An Unbreakable Marvel

“This is the first time anyone has succeeded in creating molecular glass under simple conditions”, says Prof. Gazit, “but not less important than that are the properties of the glass we created. It is a very special glass. On the one hand, it is very strong and on the other hand, very transparent – much more transparent than ordinary glass. The normal silicate glass we all know is transparent in the visible light range, the molecular glass we created is transparent deep into the infrared range. This has many uses in fields such as satellites, remote sensing, communications and optics. It is also a strong adhesive, it can glue different glasses together, and at the same time, can repair cracks that are formed in it. It is a set of properties that do not exist in any glass in the world, which has great potential in science and engineering, and we got all this from a single peptide – one little piece of protein”.

Prof. Hagit Messer-Yaron: Eco-Tech ‘Nobel’ in Electrical Engineering

Congratulations to Prof. Hagit Messer-Yaron on receiving the IEEE Medal, the ‘Nobel Prize’ of Electrical Engineering for Eco-Technologies.

Tel Aviv University applauds and congratulates Prof. Hagit Messer-Yaron from the Fleischman Faculty of Engineering for winning the 2024 IEEE Medal for Environmental and Safety Technologies, for her outstanding “contributions to sensing of the environment using wireless communication networks”. IEEE, the Institute of Electrical and Electronic Engineers, established in 1884, is the world’s largest international professional association, with about 450,000 members worldwide. IEEE strives to advance technological innovation and entrepreneurship for the benefit of humanity, and the IEEE Medal is regarded by electrical engineering researchers as the ‘Nobel Prize’ in their field. Prof. Messer-Yaron explains that her research addresses two of today’s greatest scientific and technological challenges: climate change and its implications for life on Earth and processing big data in AI systems. She adds that the first challenge necessitates close monitoring of precipitation and other climatic phenomena in any place inhabited by humans and that today the presence of people is highly correlated with the existence of wireless communication networks.  
“The technology we developed enables processing and analyzing the big data collected by these existing communication networks for other purposes. Specifically, it uses changes in signal intensity to monitor meteorological phenomena in general and precipitation in particular. This is a breakthrough in monitoring climate change and the ways to address it”, says Prof. Messer-Yaron.
  Prof. Messer-Yaron’s original research enables using the existing coverage of cellular networks to monitor weather and precipitation – eliminating the need to install separate infrastructures of weather radars and locally designated stations that would be sufficiently widespread to provide reliable measures. Prof. Messer-Yaron first presented her novel idea in the leading scientific journal Science, and a 2009 study demonstrated that it can also be used to predict flash floods. For these achievements, Prof. Messer-Yaron and her co-researchers received the Best Inventor Award from WIPO – the World Intellectual Property Organization. In recent years, following Prof. Messer-Yaron’s work, research on opportunistic environmental sensing has grown significantly.  
Prof. Messer-Yaron: “I am thrilled to receive the IEEE Medal, and very pleased that my work is being recognized. I see great importance in utilizing existing technologies for the benefit of humankind and wish to thank my colleagues and students at TAU and in other research groups for their contribution to advancing this concept. Current challenges have generated considerable interest worldwide in this sustainable technology, including the establishment of a cohort of over 100 researchers working to implement it with EU funding, an initiative for promoting it in Africa, and more”.

Elevate Your Future with TAU’s Pioneering MSc Programs in Engineering

TAU introduces two new English-taught MSc degrees: Biomedical Engineering and Environmental Engineering.

Are you intrigued by the prospect of developing organs on a chip or addressing water contamination challenges? Look no further! In the upcoming academic year, Tel Aviv University (TAU) is introducing two groundbreaking MSc degrees: Biomedical Engineering and Environmental Engineering. The programs welcome aspiring engineers and environmental enthusiasts, promising a unique fusion of research, innovation, and career prospects. Conducted entirely in English, these two-year programs extend full support to international students through the dedicated Lowy International Student Life team.     “These programs are a golden opportunity for Engineering or exact science majors keen on studying Biomedical or Environmental Engineering in the start-up nation,” comments Brian Rosen, Vice Dean for International Affairs in the Faculty of Engineering.
“TAU is one of the world’s most innovative universities and largest producers of unicorn startup founders.”—Brian Rosen, Vice Dean for International Affairs in the Faculty of Engineering.
Exceptional students in the research track may qualify for several types of scholarships.

Delve into the Future with Biomedical Engineering

Biomedical engineering is a rapidly evolving field, and TAU’s MSc program immerses students in this dynamic domain. Spanning disciplines such as mathematics, data science, AI, electronics, mechanics, physics, biology, and physiology, the program equips clinicians with advanced tools for precise and non-invasive diagnosis and improved biomedical devices.
“The Department of Biomedical is listed in the top 150 BME departments in the world, and the fact that more than 10 hospitals are affiliated to TAU ensures a swift translation of research into clinical practice,”—Professor Ben Maoz, the head of the Biomedical Engineering MSc program.
Tissue engineering is just one of such pivotal tools aiding researchers in understanding human physiology and facilitating drug development.   Professor Ben Maoz, Department of Bio-Medical Engineering, the head of the Biomedical Engineering MSc program Within this program, students can explore nine primary research areas, from biofluids and biomechanics to computational and systems biology. Working closely with a research advisor from the lab faculty, students also have the option to transition to a PhD track after the first year.

Environmental Engineering for a Sustainable Future

If you’re an engineer passionate about tackling environmental challenges, this MSc program in Environmental Engineering program is tailored for you. Join the program and become an engineer who makes a difference in the future of our planet. During your studies, you will be able to dive into fields such as water purification technologies, renewable energy, desalination, microplastics, nanotechnologies, air quality improvement, and more. Professor Hadas Mamane, School of Mechanical Engineering, head of MSc in Environmental Engineering Professor Hadas Mamane, the program head, assigns great importance to hands-on experience from day one:
“Our students collaborate in TAU’s extensive research labs with leading scientists and participate in industrial internships with leading companies.”
Ranked as the top Environmental Engineering program in Israel (2023 Shanghai Ranking), the program emphasizes both technological and practical learning from industry professionals and the development of interdisciplinary skills. Graduates are prepared for diverse career paths, extending beyond environmental engineering to roles in AI data companies focused on sustainability, government, tech firms, utility companies, NGOs, academia, and green startups.   Dr Ines Zucker and her students Whether immersing yourself in the intricacies of biomedical engineering or contributing to environmental solutions, these two new graduate programs at TAU promise a unique blend of academic rigor, practical application, and a pathway to diverse and impactful career opportunities. Embark on an educational journey that not only expands your knowledge but also positions you at the forefront of innovation in your chosen field. International admissions are now open, and you can submit your application online to seize these exciting opportunities for academic and professional growth. Join TAU in shaping the future of biomedical engineering and environmental solutions!

The Power of Sleep

New study reveals that brain’s coordination between hippocampus and cortex during sleep boosts memory consolidation, offering hope for people with memory impairments.

While a good night’s sleep is known to be critical for the consolidation of long-lasting memories, so far there has been little evidence regarding the precise processes at work during human sleep. A breakthrough study demonstrated for the first time that long-lasting memories are consolidated in the human brain through communication between the hippocampus and the cerebral cortex during sleep. Moreover, the researchers found that by inducing deep-brain stimulation during sleep they can improve memory consolidation. They believe intervention during sleep represents a unique approach that can be further developed in the future to provide hope for people with memory impairments such as dementia.

Enhancing Memory Consolidation During Sleep

The unique study, which was published in the leading journal Nature Neuroscience, involved an international collaboration led by Dr. Maya Geva-Sagiv (today at UC Davis). The study was a collaboration between the laboratories of Prof. Yuval Nir from the Sackler Faculty of Medicine, Department of Biomedical Engineering at The Iby and Aladar Fleischman Faculty of Engineering, and Sagol School of Neuroscience at Tel Aviv University, and Prof. Itzhak Fried from the Department of Neurosurgery at UCLA and the Sackler Faculty of Medicine at Tel Aviv University.

 

“Intervention during sleep represents a unique approach that can be further developed in the future to provide hope for people with memory impairments such as dementia.” – Prof. Yuval Nir

 

 

 

The researchers (from left to right): Dr. Maya Geva-Sagiv, Prof. Yuval Nir and Prof. Itzhak Fried

“This study was made possible by a rare group of 18 patients with epilepsy at the UCLA Medical Center,” says Prof. Nir. “Prof. Fried implanted electrodes in these patients’ brains to try and pinpoint the areas that cause their epileptic seizures, and they volunteered to take part in a study investigating the effects of deep-brain stimulation during sleep. Close work with expert neurologists led by Prof. Dawn Eliashiv at UCLA enabled our team to integrate advanced brain stimulation in the research. Thus, we were able to test, for the first time in humans, the long-held hypothesis – that coordinated activity of the hippocampus and cerebral cortex during sleep is a critical mechanism in consolidating memories.”

“Moreover, we improved memory consolidation through a special stimulation protocol that enhanced synchronization between these two areas in the brain. Intervention during sleep represents a unique approach that can be further developed in the future to provide hope for people with memory impairments such as dementia.”

 

 

“In this study we directly examined the role of neural activity and electrical brain waves during sleep. Our goal was to enhance the natural mechanisms at play, to discover exactly how sleep assists in stabilizing memories.” – Dr. Maya Geva-Sagiv

 

 

Unraveling Mechanism

“We know that a good night’s sleep is critical for the consolidation of long-lasting memories, but so far, we had little evidence regarding the precise processes that are at work during human sleep,” explains Dr. Maya Geva-Sagiv. “In this study we directly examined the role of neural activity and electrical brain waves during sleep. Our goal was to enhance the natural mechanisms at play, to discover exactly how sleep assists in stabilizing memories.”

The researchers developed a deep-brain stimulation system that improves electrical communication between the hippocampus – a deep-brain region involved in acquiring new memories, and the frontal cortex – where memories are stored for the long term. By monitoring activity in the hippocampus during sleep, the system enables precisely timed delivery of electrical stimulation to the frontal cortex.

The study’s participants completed two memory tests, and their performance was compared after two different nights – one undisturbed and one with deep-brain stimulation. On both occasions, they were asked in the morning to recognize famous persons whose pictures they had been shown the previous evening. The study found that deep-brain stimulation significantly improved the accuracy of their memory.

 

 

“To our surprise, we also discovered that the intervention did not significantly increase the number of right answers given by participants, but rather reduced the number of wrong answers. This suggests that sleep sharpens the accuracy of our memory…”   – Prof. Yuval Nir

 

 

Sharpening Memory Accuracy

“We found that our method had a beneficial effect on both brain activity during sleep and memory performance,” says Prof. Fried. “All patients who had received synchronized stimuli to the frontal cortex demonstrated better memory performance, compared to nights of undisturbed sleep. The control group, which received similar yet unsynchronized stimuli, showed no memory improvement. Our deep-brain stimulation method is unique because it is close-looped – stimuli are precisely synchronized with hippocampal activity. In addition, we monitored the stimuli’s impact on brain activity at a resolution of individual neurons.”

“Our findings support the hypothesis that precise coordination between sleep waves assists communication between the hippocampus that takes in new memories, and the frontal cortex that stores them for the long term,” adds Prof. Nir.

“To our surprise, we also discovered that the intervention did not significantly increase the number of right answers given by participants, but rather reduced the number of wrong answers. This suggests that sleep sharpens the accuracy of our memory, or in other words, it removes various distractions from the relevant memory trace.”   

  The study was supported by grants from the US National Institutes of Health (NIH), the European Research Council (ERC), the US National Science Foundation (NSF), the US-Israel Bilateral Science Foundation (BSF), and the Human Frontier Science Program (HFSP). The paper’s other co-authors are: Prof. Dawn Eliashiv, Dr. Emily Mankin, Natalie Cherry, Guldamla Kalender, and Dr. Natalia Tchemondanov of UCLA, and Dr. Shdema Epstein from Tel Aviv University.

Tiny Robot Navigates in Physiological Environment and Captures Targeted Damaged Cells

Meet the hybrid micro-robot: innovative technology only 10 microns across.

Researchers at Tel Aviv University have developed a hybrid micro-robot, the size of a single biological cell (about 10 microns across), that can be controlled and navigated using two different mechanisms – electric and magnetic. The micro-robot is able to navigate between different cells in a biological sample, distinguish between different types of cells, identify whether they are healthy or dying, and then transport the desired cell for further study, such as genetic analysis. The micro-robot can also transfect a drug and/or gene into the captured targeted single cell. According to the researchers, the development may help promote research in the important field of ‘single cell analysis’, as well as find use in medical diagnosis, drug transport and screening, surgery, and environmental protection.

Inspired by Biological Micro-swimmers

The innovative technology was developed by Prof. Gilad Yossifon from the School of Mechanical Engineering and Department of Biomedical Engineering at Tel Aviv University and his team: post-doctoral researcher Dr. Yue Wu and student Sivan Yakov, in collaboration with Dr. Afu Fu, Post-doctoral researcher, from the Technion, Israel Institute of Technology. The research was published in the journal Advanced Science.

 

“Developing the micro-robot’s ability to move autonomously was inspired by biological micro-swimmers, such as bacteria and sperm cells. This is an innovative area of research that is developing rapidly, with a wide variety of uses in fields such as medicine and the environment, as well as a research tool.” – Prof. Gilad Yossifon

 

Prof. Gilad Yossifon explains that micro-robots (sometimes called micro-motors or active particles) are tiny synthetic particles the size of a biological cell, which can move from place to place and perform various actions (for example: collection of synthetic or biological cargo) autonomously or through external control by an operator. According to Prof. Yossifon, “developing the micro-robot’s ability to move autonomously was inspired by biological micro-swimmers, such as bacteria and sperm cells. This is an innovative area of research that is developing rapidly, with a wide variety of uses in fields such as medicine and the environment, as well as a research tool”.

 

WATCH: The Hybrid Micro-Robot

 

As a demonstration of the capabilities of the micro-robot the researchers used it to capture single blood and cancer cells and a single bacterium, and showed that it is able to distinguish between cells with different levels of viability, such as a healthy cell, a cell damaged by a drug, or a cell that is dying or dying in a natural ‘suicide’ process (such a distinction may be significant, for example, when developing anti-cancer drugs).

After identifying the desired cell, the micro-robot captured it and moved the cell to where it could be further analyzed. Another important innovation is the ability of the micro-robot to identify target cells that are not labeled – the micro-robot identifies the type of cell and its condition (such as degree of health) using a built-in sensing mechanism based on the cell’s unique electrical properties.

Effective in Physiological Environments

“Our new development significantly advances the technology in two main aspects: hybrid propulsion and navigation by two different mechanisms – electric and magnetic,” explains Prof. Yossifon. “In addition, the micro-robot has an improved ability to identify and capture a single cell, without the need for tagging, for local testing or retrieval and transport to an external instrument. This research was carried out on biological samples in the laboratory for in-vitro assays, but the intention is to develop in the future micro-robots that will also work inside the body – for example, as effective drug carriers that can be precisely guided to the target”.

 

“… the technology will support the following areas: medical diagnosis at the single cell level, introducing drugs or genes into cells, genetic editing, carrying drugs to their destination inside the body, cleaning the environment from polluting particles, drug development, and creating a ‘laboratory on a particle’ – a microscopic laboratory designed to carry out diagnostics in places accessible only to micro-particles.” – Prof. Gilad Yossifon

 

The researchers explain that the hybrid propulsion mechanism of the micro-robot is of particular importance in physiological environments, such as found in liquid biopsies: “The micro-robots that have operated until now based on an electrical guiding mechanism were not effective in certain environments characterized by relatively high electrical conductivity, such as a physiological environment, where the electric drive is less effective. This is where the complementary magnetic mechanism come into play, which is very effective regardless of the electrical conductivity of the environment”.

Prof. Yossifon concludes: “In our research we developed an innovative micro-robot with important capabilities that significantly contribute to the field: hybrid propulsion and navigation through a combination of electric and magnetic fields, as well as the ability to identify, capture, and transport a single cell from place to place in a physiological environment. These capabilities are relevant for a wide variety of applications as well as for research. Among other things, the technology will support the following areas: medical diagnosis at the single cell level, introducing drugs or genes into cells, genetic editing, carrying drugs to their destination inside the body, cleaning the environment from polluting particles, drug development, and creating a ‘laboratory on a particle’ – a microscopic laboratory designed to carry out diagnostics in places accessible only to micro-particles.”

Victoria

Tok Corporate Centre, Level 1,
459 Toorak Road, Toorak VIC 3142
Phone: +61 3 9296 2065
Email: [email protected]

New South Wales

Level 22, Westfield Tower 2, 101 Grafton Street, Bondi Junction NSW 2022
Phone: +61 418 465 556
Email: [email protected]

Western Australia

P O Box 36, Claremont,
WA  6010
Phone: :+61 411 223 550
Email: [email protected]