Skip to main content

Tag: Engineering

Prof. Hagit Messer-Yaron: Eco-Tech ‘Nobel’ in Electrical Engineering

Congratulations to Prof. Hagit Messer-Yaron on receiving the IEEE Medal, the ‘Nobel Prize’ of Electrical Engineering for Eco-Technologies.

Tel Aviv University applauds and congratulates Prof. Hagit Messer-Yaron from the Fleischman Faculty of Engineering for winning the 2024 IEEE Medal for Environmental and Safety Technologies, for her outstanding “contributions to sensing of the environment using wireless communication networks”. IEEE, the Institute of Electrical and Electronic Engineers, established in 1884, is the world’s largest international professional association, with about 450,000 members worldwide. IEEE strives to advance technological innovation and entrepreneurship for the benefit of humanity, and the IEEE Medal is regarded by electrical engineering researchers as the ‘Nobel Prize’ in their field. Prof. Messer-Yaron explains that her research addresses two of today’s greatest scientific and technological challenges: climate change and its implications for life on Earth and processing big data in AI systems. She adds that the first challenge necessitates close monitoring of precipitation and other climatic phenomena in any place inhabited by humans and that today the presence of people is highly correlated with the existence of wireless communication networks.  
“The technology we developed enables processing and analyzing the big data collected by these existing communication networks for other purposes. Specifically, it uses changes in signal intensity to monitor meteorological phenomena in general and precipitation in particular. This is a breakthrough in monitoring climate change and the ways to address it”, says Prof. Messer-Yaron.
  Prof. Messer-Yaron’s original research enables using the existing coverage of cellular networks to monitor weather and precipitation – eliminating the need to install separate infrastructures of weather radars and locally designated stations that would be sufficiently widespread to provide reliable measures. Prof. Messer-Yaron first presented her novel idea in the leading scientific journal Science, and a 2009 study demonstrated that it can also be used to predict flash floods. For these achievements, Prof. Messer-Yaron and her co-researchers received the Best Inventor Award from WIPO – the World Intellectual Property Organization. In recent years, following Prof. Messer-Yaron’s work, research on opportunistic environmental sensing has grown significantly.  
Prof. Messer-Yaron: “I am thrilled to receive the IEEE Medal, and very pleased that my work is being recognized. I see great importance in utilizing existing technologies for the benefit of humankind and wish to thank my colleagues and students at TAU and in other research groups for their contribution to advancing this concept. Current challenges have generated considerable interest worldwide in this sustainable technology, including the establishment of a cohort of over 100 researchers working to implement it with EU funding, an initiative for promoting it in Africa, and more”.

Elevate Your Future with TAU’s Pioneering MSc Programs in Engineering

TAU introduces two new English-taught MSc degrees: Biomedical Engineering and Environmental Engineering.

Are you intrigued by the prospect of developing organs on a chip or addressing water contamination challenges? Look no further! In the upcoming academic year, Tel Aviv University (TAU) is introducing two groundbreaking MSc degrees: Biomedical Engineering and Environmental Engineering. The programs welcome aspiring engineers and environmental enthusiasts, promising a unique fusion of research, innovation, and career prospects. Conducted entirely in English, these two-year programs extend full support to international students through the dedicated Lowy International Student Life team.     “These programs are a golden opportunity for Engineering or exact science majors keen on studying Biomedical or Environmental Engineering in the start-up nation,” comments Brian Rosen, Vice Dean for International Affairs in the Faculty of Engineering.
“TAU is one of the world’s most innovative universities and largest producers of unicorn startup founders.”—Brian Rosen, Vice Dean for International Affairs in the Faculty of Engineering.
Exceptional students in the research track may qualify for several types of scholarships.

Delve into the Future with Biomedical Engineering

Biomedical engineering is a rapidly evolving field, and TAU’s MSc program immerses students in this dynamic domain. Spanning disciplines such as mathematics, data science, AI, electronics, mechanics, physics, biology, and physiology, the program equips clinicians with advanced tools for precise and non-invasive diagnosis and improved biomedical devices.
“The Department of Biomedical is listed in the top 150 BME departments in the world, and the fact that more than 10 hospitals are affiliated to TAU ensures a swift translation of research into clinical practice,”—Professor Ben Maoz, the head of the Biomedical Engineering MSc program.
Tissue engineering is just one of such pivotal tools aiding researchers in understanding human physiology and facilitating drug development.   Professor Ben Maoz, Department of Bio-Medical Engineering, the head of the Biomedical Engineering MSc program Within this program, students can explore nine primary research areas, from biofluids and biomechanics to computational and systems biology. Working closely with a research advisor from the lab faculty, students also have the option to transition to a PhD track after the first year.

Environmental Engineering for a Sustainable Future

If you’re an engineer passionate about tackling environmental challenges, this MSc program in Environmental Engineering program is tailored for you. Join the program and become an engineer who makes a difference in the future of our planet. During your studies, you will be able to dive into fields such as water purification technologies, renewable energy, desalination, microplastics, nanotechnologies, air quality improvement, and more. Professor Hadas Mamane, School of Mechanical Engineering, head of MSc in Environmental Engineering Professor Hadas Mamane, the program head, assigns great importance to hands-on experience from day one:
“Our students collaborate in TAU’s extensive research labs with leading scientists and participate in industrial internships with leading companies.”
Ranked as the top Environmental Engineering program in Israel (2023 Shanghai Ranking), the program emphasizes both technological and practical learning from industry professionals and the development of interdisciplinary skills. Graduates are prepared for diverse career paths, extending beyond environmental engineering to roles in AI data companies focused on sustainability, government, tech firms, utility companies, NGOs, academia, and green startups.   Dr Ines Zucker and her students Whether immersing yourself in the intricacies of biomedical engineering or contributing to environmental solutions, these two new graduate programs at TAU promise a unique blend of academic rigor, practical application, and a pathway to diverse and impactful career opportunities. Embark on an educational journey that not only expands your knowledge but also positions you at the forefront of innovation in your chosen field. International admissions are now open, and you can submit your application online to seize these exciting opportunities for academic and professional growth. Join TAU in shaping the future of biomedical engineering and environmental solutions!

The Power of Sleep

New study reveals that brain’s coordination between hippocampus and cortex during sleep boosts memory consolidation, offering hope for people with memory impairments.

While a good night’s sleep is known to be critical for the consolidation of long-lasting memories, so far there has been little evidence regarding the precise processes at work during human sleep. A breakthrough study demonstrated for the first time that long-lasting memories are consolidated in the human brain through communication between the hippocampus and the cerebral cortex during sleep. Moreover, the researchers found that by inducing deep-brain stimulation during sleep they can improve memory consolidation. They believe intervention during sleep represents a unique approach that can be further developed in the future to provide hope for people with memory impairments such as dementia.

Enhancing Memory Consolidation During Sleep

The unique study, which was published in the leading journal Nature Neuroscience, involved an international collaboration led by Dr. Maya Geva-Sagiv (today at UC Davis). The study was a collaboration between the laboratories of Prof. Yuval Nir from the Sackler Faculty of Medicine, Department of Biomedical Engineering at The Iby and Aladar Fleischman Faculty of Engineering, and Sagol School of Neuroscience at Tel Aviv University, and Prof. Itzhak Fried from the Department of Neurosurgery at UCLA and the Sackler Faculty of Medicine at Tel Aviv University.

 

“Intervention during sleep represents a unique approach that can be further developed in the future to provide hope for people with memory impairments such as dementia.” – Prof. Yuval Nir

 

 

 

The researchers (from left to right): Dr. Maya Geva-Sagiv, Prof. Yuval Nir and Prof. Itzhak Fried

“This study was made possible by a rare group of 18 patients with epilepsy at the UCLA Medical Center,” says Prof. Nir. “Prof. Fried implanted electrodes in these patients’ brains to try and pinpoint the areas that cause their epileptic seizures, and they volunteered to take part in a study investigating the effects of deep-brain stimulation during sleep. Close work with expert neurologists led by Prof. Dawn Eliashiv at UCLA enabled our team to integrate advanced brain stimulation in the research. Thus, we were able to test, for the first time in humans, the long-held hypothesis – that coordinated activity of the hippocampus and cerebral cortex during sleep is a critical mechanism in consolidating memories.”

“Moreover, we improved memory consolidation through a special stimulation protocol that enhanced synchronization between these two areas in the brain. Intervention during sleep represents a unique approach that can be further developed in the future to provide hope for people with memory impairments such as dementia.”

 

 

“In this study we directly examined the role of neural activity and electrical brain waves during sleep. Our goal was to enhance the natural mechanisms at play, to discover exactly how sleep assists in stabilizing memories.” – Dr. Maya Geva-Sagiv

 

 

Unraveling Mechanism

“We know that a good night’s sleep is critical for the consolidation of long-lasting memories, but so far, we had little evidence regarding the precise processes that are at work during human sleep,” explains Dr. Maya Geva-Sagiv. “In this study we directly examined the role of neural activity and electrical brain waves during sleep. Our goal was to enhance the natural mechanisms at play, to discover exactly how sleep assists in stabilizing memories.”

The researchers developed a deep-brain stimulation system that improves electrical communication between the hippocampus – a deep-brain region involved in acquiring new memories, and the frontal cortex – where memories are stored for the long term. By monitoring activity in the hippocampus during sleep, the system enables precisely timed delivery of electrical stimulation to the frontal cortex.

The study’s participants completed two memory tests, and their performance was compared after two different nights – one undisturbed and one with deep-brain stimulation. On both occasions, they were asked in the morning to recognize famous persons whose pictures they had been shown the previous evening. The study found that deep-brain stimulation significantly improved the accuracy of their memory.

 

 

“To our surprise, we also discovered that the intervention did not significantly increase the number of right answers given by participants, but rather reduced the number of wrong answers. This suggests that sleep sharpens the accuracy of our memory…”   – Prof. Yuval Nir

 

 

Sharpening Memory Accuracy

“We found that our method had a beneficial effect on both brain activity during sleep and memory performance,” says Prof. Fried. “All patients who had received synchronized stimuli to the frontal cortex demonstrated better memory performance, compared to nights of undisturbed sleep. The control group, which received similar yet unsynchronized stimuli, showed no memory improvement. Our deep-brain stimulation method is unique because it is close-looped – stimuli are precisely synchronized with hippocampal activity. In addition, we monitored the stimuli’s impact on brain activity at a resolution of individual neurons.”

“Our findings support the hypothesis that precise coordination between sleep waves assists communication between the hippocampus that takes in new memories, and the frontal cortex that stores them for the long term,” adds Prof. Nir.

“To our surprise, we also discovered that the intervention did not significantly increase the number of right answers given by participants, but rather reduced the number of wrong answers. This suggests that sleep sharpens the accuracy of our memory, or in other words, it removes various distractions from the relevant memory trace.”   

  The study was supported by grants from the US National Institutes of Health (NIH), the European Research Council (ERC), the US National Science Foundation (NSF), the US-Israel Bilateral Science Foundation (BSF), and the Human Frontier Science Program (HFSP). The paper’s other co-authors are: Prof. Dawn Eliashiv, Dr. Emily Mankin, Natalie Cherry, Guldamla Kalender, and Dr. Natalia Tchemondanov of UCLA, and Dr. Shdema Epstein from Tel Aviv University.

Tiny Robot Navigates in Physiological Environment and Captures Targeted Damaged Cells

Meet the hybrid micro-robot: innovative technology only 10 microns across.

Researchers at Tel Aviv University have developed a hybrid micro-robot, the size of a single biological cell (about 10 microns across), that can be controlled and navigated using two different mechanisms – electric and magnetic. The micro-robot is able to navigate between different cells in a biological sample, distinguish between different types of cells, identify whether they are healthy or dying, and then transport the desired cell for further study, such as genetic analysis. The micro-robot can also transfect a drug and/or gene into the captured targeted single cell. According to the researchers, the development may help promote research in the important field of ‘single cell analysis’, as well as find use in medical diagnosis, drug transport and screening, surgery, and environmental protection.

Inspired by Biological Micro-swimmers

The innovative technology was developed by Prof. Gilad Yossifon from the School of Mechanical Engineering and Department of Biomedical Engineering at Tel Aviv University and his team: post-doctoral researcher Dr. Yue Wu and student Sivan Yakov, in collaboration with Dr. Afu Fu, Post-doctoral researcher, from the Technion, Israel Institute of Technology. The research was published in the journal Advanced Science.

 

“Developing the micro-robot’s ability to move autonomously was inspired by biological micro-swimmers, such as bacteria and sperm cells. This is an innovative area of research that is developing rapidly, with a wide variety of uses in fields such as medicine and the environment, as well as a research tool.” – Prof. Gilad Yossifon

 

Prof. Gilad Yossifon explains that micro-robots (sometimes called micro-motors or active particles) are tiny synthetic particles the size of a biological cell, which can move from place to place and perform various actions (for example: collection of synthetic or biological cargo) autonomously or through external control by an operator. According to Prof. Yossifon, “developing the micro-robot’s ability to move autonomously was inspired by biological micro-swimmers, such as bacteria and sperm cells. This is an innovative area of research that is developing rapidly, with a wide variety of uses in fields such as medicine and the environment, as well as a research tool”.

 

WATCH: The Hybrid Micro-Robot

 

As a demonstration of the capabilities of the micro-robot the researchers used it to capture single blood and cancer cells and a single bacterium, and showed that it is able to distinguish between cells with different levels of viability, such as a healthy cell, a cell damaged by a drug, or a cell that is dying or dying in a natural ‘suicide’ process (such a distinction may be significant, for example, when developing anti-cancer drugs).

After identifying the desired cell, the micro-robot captured it and moved the cell to where it could be further analyzed. Another important innovation is the ability of the micro-robot to identify target cells that are not labeled – the micro-robot identifies the type of cell and its condition (such as degree of health) using a built-in sensing mechanism based on the cell’s unique electrical properties.

Effective in Physiological Environments

“Our new development significantly advances the technology in two main aspects: hybrid propulsion and navigation by two different mechanisms – electric and magnetic,” explains Prof. Yossifon. “In addition, the micro-robot has an improved ability to identify and capture a single cell, without the need for tagging, for local testing or retrieval and transport to an external instrument. This research was carried out on biological samples in the laboratory for in-vitro assays, but the intention is to develop in the future micro-robots that will also work inside the body – for example, as effective drug carriers that can be precisely guided to the target”.

 

“… the technology will support the following areas: medical diagnosis at the single cell level, introducing drugs or genes into cells, genetic editing, carrying drugs to their destination inside the body, cleaning the environment from polluting particles, drug development, and creating a ‘laboratory on a particle’ – a microscopic laboratory designed to carry out diagnostics in places accessible only to micro-particles.” – Prof. Gilad Yossifon

 

The researchers explain that the hybrid propulsion mechanism of the micro-robot is of particular importance in physiological environments, such as found in liquid biopsies: “The micro-robots that have operated until now based on an electrical guiding mechanism were not effective in certain environments characterized by relatively high electrical conductivity, such as a physiological environment, where the electric drive is less effective. This is where the complementary magnetic mechanism come into play, which is very effective regardless of the electrical conductivity of the environment”.

Prof. Yossifon concludes: “In our research we developed an innovative micro-robot with important capabilities that significantly contribute to the field: hybrid propulsion and navigation through a combination of electric and magnetic fields, as well as the ability to identify, capture, and transport a single cell from place to place in a physiological environment. These capabilities are relevant for a wide variety of applications as well as for research. Among other things, the technology will support the following areas: medical diagnosis at the single cell level, introducing drugs or genes into cells, genetic editing, carrying drugs to their destination inside the body, cleaning the environment from polluting particles, drug development, and creating a ‘laboratory on a particle’ – a microscopic laboratory designed to carry out diagnostics in places accessible only to micro-particles.”

Prof. Dan Peer Appointed as Member of the Prestigious American National Academy of Engineering

In recognition of his groundbreaking research developing unique strategies for delivering RNA molecules.

The National Academy of Engineering (NAE), one of the three National Academies in the USA (Sciences, Medicine, and Engineering), has announced the appointment of Prof. Dan Peer from Tel Aviv University, currently TAU’s VP R&D and Head of the Nanomedicine Lab at The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences and from The Department of Materials Science and Engineering at The Iby and Aladar Fleischman Faculty of Engineering, as Member of the Academy, in recognition of his groundbreaking research developing unique strategies for delivering RNA molecules.

Prof. Peer is a trailblazing scientist and pioneer in developing RNA-based molecular drugs for a wide range of diseases, including inflammatory bowel diseases; blood, brain, and ovarian cancers; and rare genetic diseases.

He also investigates the use of RNA molecules as vaccines for viral diseases and develops nano-scale drug carriers that can target specific cells selectively. Among his landmark achievements: Prof. Peer and his lab were first in the world to demonstrate a process for production of medicinal proteins by RNA molecules in animals, as well as use of short RNA to silence genes in immune cells, and gene editing by means of nanoparticles that target specific cells when injected into the bloodstream.

In addition to his innovative research, Prof. Peer serves in several leading positions: TAU’s VP R&D, Chair of Ramot – the technology transfer company of Tel Aviv University, and Chair of TAU Ventures. Prof. Peer is also a member of the American Society for Cell Biology and the American Association for the Advancement of Science. Over the years he has contributed to many inventions (over 130 patents filed), commercialized through several companies, and established startups in Israel, the UK, and the USA.

Featured image: Prof. Dan Peer (Photo Credit: TAU)

First Satellite Observatory for Quantum Optical Communication in Israel

Tel Aviv University’s observatory is among the most advanced in the world.

Tel Aviv University establishes the first satellite observatory for quantum optical communication

The Center for Quantum Science and Technology at Tel Aviv University has built the first ground station in Israel – and among the most advanced in the world – for tracking, sensing, hyperspectral imaging, and optical and quantum communication with satellites in orbit around the Earth. 

 

“It is impossible to launch a cyber-attack and copy the information, because in quantum mechanics there is a principle that prevents copying (…) That’s how it works in theory. In practice, there are quite a few research questions that need to be answered.” Prof. Yaron Oz

 

Tracking Satellites on the Move

The station includes a satellite observatory dome with a diameter of 4.25 meters, a tracking system, a primary high-speed camera and secondary tracking cameras, laser equipment, single-photon detectors, and a tracking robot that can carry two telescopes simultaneously. At this stage, the robot arm holds a 24-inch telescope, and in the next stage, the observatory will be equipped with another telescope designed for photography in the infrared range, as well as thermal and hyperspectral cameras.

“The ground station is designed for observing satellites, which are small bodies 400-500 kilometers high that move at about 30,000 kilometers an hour,” says Prof. Yaron Oz, head of the Center for Quantum Science and Technology at Tel Aviv University. “The ability to track satellites is a very precise skill. The satellite passes by very quickly, and during this time you must photograph it in the center of the image and in several different ranges of the electromagnetic spectrum to learn details about it. This is the first and only satellite observatory in Israel, and it is among the most advanced in the entire world.”

In addition to regular optical communication, which uses lasers or LEDs of different wavelengths, the new ground station will also enable the conduction of experiments in quantum optical communication. Advanced communications use the quantum properties of individual photons to transmit encrypted information.

“Theoretically speaking, quantum communication is completely encrypted,” explains Prof. Oz. “It is impossible to launch a cyber-attack and copy the information, because in quantum mechanics there is a principle that prevents copying. As soon as a third party tries to intercept a message, they destroy the original signal – for example, by changing the polarization of the photons – and both communicating parties will know that someone tried to listen in on them.”

“That’s how it works in theory. In practice, there are quite a few research questions that need to be answered.”

“For example, what do we do with interference in a signal that is not created because of attempted eavesdropping, but rather, for example, from the weather? Should we use qubits or qudits, photons that have more than two states? And more generally, how much information can be transmitted this way within the limited transmission time in which the satellite passes over the ground station? The list of unanswered questions is long. It must be understood that quantum communication is a completely experimental field. There are protocols from experiments conducted in laboratories, but the only country that has successfully demonstrated such communication is China, which did so already in 2016. The Americans also apparently succeeded in this, but they published nothing about it in scientific journals. Apart from these two superpowers, a few countries like Germany, Singapore, and now Israel are preparing to demonstrate this capability.”

 

Prof. Yaron Oz

 

“Ultimately, we would also like to launch our own satellite, which will try to establish quantum communication with the ground station and with a similar satellite in Singapore.” Prof. Yaron Oz

 

The Goal: A Dedicated “Blue and White” Quantum Satellite

In the first phase of the project, the Tel Aviv University researchers will try to establish optical communication followed by quantum communication between ground stations, between ground stations and drones, and then between ground stations and a satellite of one of their international partners. Within two to three years, the researchers hope to raise the funds to build a dedicated “blue and white” quantum satellite.

“We are employing the ‘tower and stockade’ method,” says Prof. Oz. “In the beginning, we will place a transmitter on the roof of the second building of the School of Physics, in an attempt to produce an immune quantum key with a rate of hundreds to thousands of bits per second, with the aim of learning and improving the positioning, switching and synchronization capabilities of the light sources and the single-photon detectors. Later, we would like to reduce the size of the transmission system and integrate it into an airborne system, initially with drones, and establish a network of quantum communications. Ultimately, we would also like to launch our own satellite, which will try to establish quantum communication with the ground station and with a similar satellite in Singapore.”

Prof. Ady Arie of The Iby and Aladar Fleischman Faculty of Engineering, Prof. Haim Suchowski and Prof. Erez Etzion of the Raymond and Beverly Sackler School of Physics & Astronomy, director of the optical ground station Michael Tzukran, and research students Dr. Georgi Gary Rozenman, Yuval Reches and Tomer Nahum are also participating in the groundbreaking project. The project is being funded by the University’s Center for Quantum Science and Technology, led by Prof. Yaron Oz and under the administrative management of Ms. Ronit Ackerman, and by the Israel Space Agency under the Ministry of Innovation, Science and Technology.

Prof. Ehud Gazit Elected Fellow of the US National Academy of Inventors

The appointment is the highest recognition given by the Academy, awarded to innovators whose inventions have had a decisive impact on quality of life, economic development, and social welfare.

Prof. Ehud Gazit of Tel Aviv University was recently elected as a Fellow of the United States National Academy of Inventors (NAI). The appointment to the rank of NAI Fellow is the highest recognition given by the Academy, awarded to innovators whose inventions have had a decisive impact on quality of life, economic development, and social welfare.

The National Academy of Inventors counts over 4,000 members in about 250 different institutions around the world, who as of today hold over 58,000 registered patents. The National Academy of Inventors was established in 2010 to recognize and encourage inventions that are covered by US patents.

Prof. Ehud Gazit is a Full Professor at The Shmunis School of Biomedicine and Cancer Research in The George S. Wise Faculty of Life Sciences and The Department of Materials Science and Engineering in The Iby and Aladar Fleischman Faculty of Engineering at Tel Aviv University. In addition, he is incumbent of the Chair of the Biotechnology of Degenerative Diseases, a member of the University’s Executive Committee, and the Founding Director of the Blavatnik Center for Drug Discovery.

As one of the most prolific inventors in the Israeli academy, he has been granted over a hundred patents, and has managed the transfer of technologies to companies in Israel and around the world. Two drugs he developed are currently in human trials, many others are in model-based drug development, and a food supplement that he co-developed is currently sold in the US.

Professor Gazit thanked the members of the NAI: “I would like to express my gratitude to the members of the Academy for selecting me for this honor. My research focuses on the interconnectedness of discovery, invention, and application, and I strongly believe that basic and groundbreaking science can and should be applied for the benefit of society. I am grateful for the recognition of our efforts in this regard. I would also like to thank my current and former students and colleagues for their innovative research, as well as the staff at ’Ramot‘ for translating our work into practical applications in industry.”

He previously served as Tel Aviv University’s Vice President for Research and Development, as Chairman of Ramot, Tel Aviv University’s technology transfer company, and as the Chief Scientist of the Israeli Ministry of Science and Technology.

Over the years, Prof. Gazit has won a series of prestigious awards in Israel and around the world, including the Kadar Family Award for Outstanding Research, the Landau Award for Arts and Sciences, and the Rappaport Prize for excellence in biomedical research. He is a Fellow of the Royal Society of Chemistry in the UK, a foreign member of the National Academy of Sciences in India, and a member of the European Molecular Biology Organization. He was recently appointed to the International Solvay Chair in Chemistry for 2023, the first Israeli to be appointed to this position previously held by 15 of the world’s top scientists, including three Nobel Prize winners in chemistry.

Robot, Can You Smell This?

In a scientific first, a robot can “smell” using a biological sensor.

After having developed a robot that hears through the ear of a locust, researchers from Tel Aviv University have succeeded in equipping a robot with the sense of smell, using a biological sensor. The sensor sends electrical signals as a response to the presence of a nearby odor, which the robot can detect and interpret. The researchers successfully connected the biological sensor to an electronic system and using a machine learning algorithm, were able to identify odors with a level of sensitivity 10,000 times higher than that of a commonly used electronic device. The researchers say “The sky’s the limit,” and believe that this technology may also be used in the future to identify explosives, drugs, diseases, and more.

WATCH: The first robot with a biological nose. Only at Tel Aviv University.

 

 

 

“Man-made technologies still can’t compete with millions of years of evolution. One area in which we particularly lag behind the animal world is that of smell perception (…) When they want to check if a passenger is smuggling drugs [at the airport], they bring in a dog to sniff him.” Dr. Ben Maoz and Prof. Amir Ayali

 

Technology Lags Behind Evolution

The biological and technological breakthrough was led by doctoral student Neta Shvil of Tel Aviv University’s Sagol School of Neuroscience, Dr. Ben Maoz of the Fleischman Faculty of Engineering and the Sagol School of Neuroscience, and Prof. Yossi Yovel and Prof. Amir Ayali of the School of Zoology and the Sagol School of Neuroscience. The results of the study were published in the prestigious journal Biosensor and Bioelectronics.

Dr. Maoz and Prof. Ayali explain: “Man-made technologies still can’t compete with millions of years of evolution. One area in which we particularly lag behind the animal world is that of smell perception (…) When they want to check if a passenger is smuggling drugs [at the airport], they bring in a dog to sniff him.”

“In the animal world, insects excel at receiving and processing sensory signals. A mosquito, for example, can detect a 0.01 percent difference in the level of carbon dioxide in the air. Today, we are far from producing sensors whose capabilities come close to those of insects.”

The researchers point out that, in general, our sensory organs, such as the eye, ear and nose – as well as those of all other animals – use receptors that identify and distinguish between different signals. Then, the sensory organ translates these findings into electrical signals, which the brain decodes as information. The challenge of biosensors is in the connection of a sensory organ, like the nose, to an electronic system that knows how to decode the electrical signals received from the receptors.

 

Dr. Ben Maoz and doctoral student Neta Shvil

 

“Nature is much more advanced than we are, so we should take advantage of that.” Dr. Ben Maoz. 

 

10,000 Times More Sensitive to Smell

“We connected the biological sensor [to the electronic system] and let it smell different odors while we measured the electrical activity that each odor induced,” explains Prof. Yovel. “The system allowed us to detect each odor at the level of the insect’s primary sensory organ.”

“Then, in the second step, we used machine learning to create a ‘library’ of smells. In the study, we were able to characterize 8 odors, such as geranium, lemon and marzipan, in a way that allowed us to know when the smell of lemon or marzipan was presented. In fact, after the experiment was over, we continued to identify additional different and unusual smells, such as various types of Scotch whiskey. A comparison with standard measuring devices showed that the sensitivity of the insect’s nose in our system is about 10,000 times higher than the devices that are in use today.”

“Nature is much more advanced than we are, so we should take advantage of that,” says Dr. Maoz. “The principle we have demonstrated can be used and applied to other senses, such as sight and touch. For example, some animals have amazing abilities to detect explosives or drugs; the creation of a robot with a biological nose could help us preserve human life and identify criminals in a way that is not possible today. Some animals can detect diseases. Others sense earthquakes. The sky is the limit.”

What’s next? The researchers plan to give the robot a navigation ability to allow it to localize the odor source and later, its identity. 

 

Will he be able to retire soon? A working dog searches for hazardous materials at the airport

Researchers use Smartwatches to Measure Safety of COVID Vaccine

Tel Aviv University researchers monitored the physiological data of close to 5,000 Israelis over two years.

In a first-of-its-kind study, researchers at Tel Aviv University equipped close to 5,000 Israelis with smartwatches and monitored their physiological parameters over two years. Of those monitored, 2,038 received the booster dose of the coronavirus vaccine, allowing the researchers to objectively compare measures before and after the participants took the vaccine, and confirm its safety.

In addition, in collaboration with the Kahn Sagol Maccabi Research & Innovation Center (KSM – the research and innovation institute of the Israeli Maccabi Healthcare Services), the researchers examined the safety of the booster by analyzing the medical files of 250,000 members of Maccabi Health Services anonymously (without identifying details) and with the approval of the Helsinki Committee. From the analysis of this large amount of data, the researchers were able to evaluate the safety of the vaccines from three perspectives: subjectively – what the participant reports, objectively – what the watch detects, and clinically – what the doctor diagnoses.

 

“We saw clear and significant changes after administration of the vaccine (…) and then we saw a return to the participant’s baseline, i.e., the pulse levels after vaccination returned to their previous levels after six days. Hence, our study confirms the safety of the vaccine.” Prof. Dan Yamin

 

Confirming the Safety of the Vaccine

The research was carried out by PhD student Matan Yechezkel under the supervision of Prof. Dan Yamin, Head of the Laboratory for Epidemic Research and led in collaboration with Prof. Erez Shmueli, Head of the Big Data Laboratory, all from The Iby and Aladar Fleischman Faculty of Engineering at Tel Aviv University. Other collaborators were Dr. Tal Patalon and Dr. Sivan Gazit, Director and Deputy Director, respectively, of KSM, as well as Dr. Amichai Painsky and Ms. Merav Mofaz from Tel Aviv University. The results of the research were published in the prestigious journal, Lancet Respiratory Medicine.

As Prof. Yamin explains: “We wanted to test the safety of booster vaccines against the coronavirus. We conducted a large-scale, two-year clinical study during which we equipped 4,698 Israelis with smartwatches. The smartwatches were used to monitor several parameters such as heart rate, variation in heart activity, quality of sleep, number of daily steps taken, and more. In addition, the participants were asked to fill out daily questionnaires about their health status in a customized application that we developed. Finally, we analyzed data on potential unusual events from the medical files of a quarter of a million randomly selected, anonymous, insured members of the Maccabi Health Services.”

Since the medical file contains the date the booster vaccine was administered, researchers were able to compare the condition of the vaccinated patient with his/her baseline condition from 42 days before receiving the vaccine to the condition of 42 days after receiving the vaccine. The data was obtained from the questionnaires, smartwatches, and records of the Maccabi Health Fund.

 

Prof. Dan Yamin

“We saw clear and significant changes after administration of the vaccine, such as an increase in heart rate compared to the pulse rate measured before vaccination,” says Prof. Yamin, “and then we saw a return to the participant’s baseline, i.e., the pulse levels after vaccination returned to their previous levels after six days. Hence, our study confirms the safety of the vaccine.”

“The research also allowed us to compare subjective and objective indicators and medical diagnosis of the same participant who received the first booster and a few months later the second booster,” explains Prof. Yamin and adds, “We found no difference in the physiological response recorded by the smartwatches and that reported by the participant in the app.”

 

“The smartwatch sensors ‘felt’ that the vaccine was safe, the vaccinee himself reported that the vaccine was safe, and finally, the doctors determined that the vaccine was safe. The results of the study have far-reaching implications regarding objective testing of vaccine safety in the future.” Prof. Dan Yamin

 

Far-reaching Implications

In the medical literature, twenty-five unusual side effects attributed to the Corona vaccine were reported, and the researchers paid special attention to look for rare cases of inflammation of the heart muscle (myocarditis) and pericarditis. Prof. Yamin and his colleagues checked the frequency of these unusual side effects among a quarter of a million Maccabi members and found no increase in serious incidents of any kind associated with vaccination.

Prof. Yamin concludes: “If the watch reports any minor changes in the muscles, and the participant reports only significant changes he feels, the medical file tells us about unusual events diagnosed by the doctors as well as hospitalizations that may be related to vaccinations, with an emphasis on cardiac events. We did a comprehensive analysis of all those twenty-five unusual side effects, and we did not see an increase in their incidence among those receiving the booster. We found the vaccine to be safe to use. The smartwatch sensors ‘felt’ that the vaccine was safe, the vaccinee himself reported that the vaccine was safe, and finally, the doctors determined that the vaccine was safe. The results of the study have far-reaching implications regarding objective testing of vaccine safety in the future.”

Tel Aviv University Establishes Multidisciplinary Center for Research of Autoimmune Diseases

New center enabled by a generous gift of $10 million from Judith and Stewart Colton

Tel Aviv University has established the Colton Center, Israel’s first multidisciplinary center for the study of autoimmune diseases – chronic conditions involving an abnormal response of the immune system within body tissues. The Center will collaborate with Israel’s medical centers and health services including HMO’s and Hospitals as well as selected scientists from other academic institutions to enable big data analytics of medical information and biological samples from patients with autoimmune diseases and promote understanding of the causes of morbidity and recurrent flareups and possible early diagnostics and treatments.

The TAU research approach will be unique in its nature fundamentally being based on big data analytics that will direct any traditional scientific wet lab work. The intent of the center would be to grant research funding to multidisciplinary groups of scientists including computer science, engineering, biology, statistics, mathematics, psychology, and more. The different research programs will be managed based on agreed upon milestones with the ability to reach substantial sums upon success. In addition to its multidisciplinary clinical research, the new Center will encourage experimental and theoretical studies in immunology and conduct workshops and conferences jointly with the three other Colton Centers.

Goal: Finding a Cure for Autoimmune Diseases

The Center’s establishment was enabled by a generous donation of $10 million from TAU Governors Judith and Stewart Colton. It is the fourth research center founded by the Colton family to address autoimmune diseases, joining three centers already operating in the USA – at Yale University, the University of Pennsylvania, and NYU.

“Stewart and Judith Colton, renowned Jewish philanthropists and dear friends of TAU, have set themselves a goal,” explains Prof. Ariel Porat, President of TAU. This goal is “to develop drugs and treatments for autoimmune diseases. For this purpose, they have established dedicated centers at three leading American universities, and now decided to extend this activity to TAU.”

“This donation is following many years of active contribution by the Colton Foundation to TAU’s innovation and entrepreneurships in wide range of disciplines. We are proud to belong to this elite group of universities, and together with them and the Colton family, we will strive to find a cure for autoimmune diseases.”

 

“Even though autoimmune diseases have been known to science since the beginning of the 20th century, we still don’t have adequate tools for prevention, treatment, or prediction of morbidity and recurrent flareups.” Mr. Stewart Colton

 

Tel Aviv University 

In Need of Adequate Tools

Mr. Stewart Colton comments: “We believe the Consortium created by the four universities will multiply the opportunities for advancing the chances for successful research. We have worked with TAU for almost 40 years and recognize the unique talent and dedication brought to innovative science. It is a terrible disease that deserves more attention.”

“I am particularly proud that Prof. Uri Nevo from the Department of Biomedical Engineering, who was one of the Colton Fellow graduates, was appointed to be the Chair of the Center’s Steering Committee.”

“The category of autoimmune diseases covers over 100 diseases, with relatively familiar examples including lupus, multiple sclerosis (MS), psoriasis, and Crohn’s disease.  Autoimmune diseases are defined as diseases in which the immune system, instead of pathogens such as viruses and bacteria, or cells infected with these pathogens, attack the body’s healthy tissues. Even though autoimmune diseases have been known to science since the beginning of the 20th century, we still don’t have adequate tools for prevention, treatment, or prediction of morbidity and recurrent flareups.”

 

“The new Colton Center represents the best of basic and translational research – a true collaboration between researchers and clinicians to explore the optimal avenues for deciphering the mechanisms and therapy for autoimmune diseases.” Prof. Karen Avraham

 

True Collaboration Between Researchers and Clinicians

Prof. Karen Avraham, Dean of TAU’s Sackler Faculty of Medicine adds: “the new Colton Center represents the best of basic and translational research – a true collaboration between researchers and clinicians to explore the optimal avenues for deciphering the mechanisms and therapy for autoimmune diseases.”

 

“We will start our research carefully and modestly, hoping that from the focused study we will learn about the basic principles underlying autoimmune diseases, and eventually impact the understanding of many of these diseases, and benefit vast numbers of patients.” Prof. Uri Nevo

 

Aim to Benefit Vast Numbers of Patients

Prof. Uri Nevo from the Department of Biomedical Engineering, Chair of the Center’s Steering Committee, explains that the Center’s purpose is to promote the study and understanding of autoimmune diseases in order to improve their prevention and treatment. The first goal, he says, is to obtain measurable results, identify early signs and develop predictive algorithms for both initial onset and recurrent flare-ups. Eventually, studies may provide explanations, and possibly even discover the cause.

Other goals are to define practical recommendations for preventing onset and recurrence or reducing severity, and acquire new insights about disease mechanisms, enabling the development of new treatment strategies in the future.

Prof. Nevo: “Due to the complexity of the immune system, and the difficulty in measuring the interaction between the immune system and tissues in the body, we face some tough challenges. We do not understand the biological mechanism that drives many autoimmune diseases, or how they are connected with genetic and environmental risk factors. As a result, very few specific medications are on offer, and in many cases the disease becomes chronic.

“One of our main objectives is to establish research collaborations with various players: the medical institutions affiliated with TAU, the health services, and representatives of NPOs addressing the various diseases. Our intention is to sample their data and utilize the vast knowledge they have accumulated. The data will enable computerized analysis of samples taken from autoimmune patients in Israel, to help us understand the causes for the onset and recurrent flareups of these diseases.”

To choose the focus of its research for the next few years, the Colton Center is presently sending out a dedicated survey to thousands of clinicians and researchers in Israel. “We want to hear the opinions of doctors and experts, in order to focus on a limited number of diseases,” says Prof. Nevo. “We will start our research carefully and modestly, hoping that from the focused study we will learn about the basic principles underlying autoimmune diseases, and eventually impact the understanding of many of these diseases, and benefit vast numbers of patients.”

Featured image: Mr. and Mrs. Colton

Victoria

Tok Corporate Centre, Level 1,
459 Toorak Road, Toorak VIC 3142
Phone: +61 3 9296 2065
Email: [email protected]

New South Wales

Level 22, Westfield Tower 2, 101 Grafton Street, Bondi Junction NSW 2022
Phone: +61 418 465 556
Email: [email protected]

Western Australia

P O Box 36, Claremont,
WA  6010
Phone: :+61 411 223 550
Email: [email protected]