Skip to main content

Tag: Exact Sciences

A House is Not a Home Without a Pet

TAU law students are helping elderly citizens and their pets move to senior homes.

Many senior citizens have to part with their beloved pets just when they need them the most: when they leave their homes and transition to live in public housing for the elderly. In many of these governmental institutions, pets are still not allowed – and when they are, the policy is not always implemented. This can cause a painful situation which may harm the mental and physical wellbeing of senior citizens, and affect the welfare of the animals (often senior as well) that find themselves homeless and separated from their loving caretakers.

We have some positive news: There are good people out there who are pro-actively seeking to protect the rights of pet caretakers, as well as the pets’.

Who? Students of The Buchmann Faculty of Law who work through the Clinic for Environmental Justice and the Protection of Animal Rights, an integral part of the The Coller-Menmon Animal Rights and Welfare Program, Israel’s leading and most comprehensive academic program on animal law, at the Faculty of Law. We do realize that’s a mouthful and warrants some further explanation…

Protecting Animals’ Rights

The Clinic for Environmental Justice has been handling a range of environmental issues since 2001. In 2017, it expanded its operations to include the protection of animals’ rights. Through their work at the Clinic, law students get to practice drafting applications, precedents and position papers, closely accompanied by top academics and clinical facilitators from Israel’s legal system. 

Dr. Orit Hirsch-Matsioulas researches human-animal relations. She is a post-doctoral fellow of The Coller-Menmon Animal Rights and Welfare Program and one of the founders of The Community for Human-Animal Studies Israel (HASI). Together with Adv. Amnon Keren, Program Coordinator and Clinical Instructor at the Clinic, she made the rights of the elderly and their pets one of the Clinic’s lead projects.

Both Granny and Kitty Benefit

The project was significantly accelerated when the Clinic decided to handle the appeal of a group of senior citizens who were told they were not allowed to bring their pets to their public housing apartments. “The rights of elderly people were violated,” says Dr. Hirsch-Matsioulas. “Some of them decided against moving because they did not want to part with their pets. Noah, the umbrella organization for Israel’s animal protection associations, contacted us, and we got in touch with the Ministry of Construction and Housing to change the existing policy.”

Dr. Hirsch-Matsioulas presented the Ministry with academic studies on emotional, cognitive and health-related benefits of pet relationships for senior citizens. Moreover, she brought a new element to the attention of the Ministry officials, namely the effect of the relationship on the animals.

“We built a multidisciplinary team of people from the fields of law, social sciences, social work, gerontology (i.e. the multidisciplinary study of aging, including physical aspects as well as mental, social and societal implications) and civil society organizations, and we’re working together with the Ministry of Construction and Housing,” explains Dr. Hirsch-Matsioulas. 

A temporary policy was established, allowing for the entry and keeping of pets in all public senior homes, called בתי גיל הזהב, under the responsibility of Israel’s Ministry of Construction and Housing. It was widely agreed that this temporary right should eventually become permanent, however this is a lengthy process. 

 

Kitty and Milo also have rights. Photo: Vika Minkowitz Mualem

Focusing on Solutions

While we’re excited to share that this undertaking is, in fact, a global precedent, the process of implementing the policy has not been a smooth ride. Due to Covid restrictions, the team has not been able to enter the senior housing buildings to teach the staff about the new guidelines for successful implementation. “The doors have been opened. Now, we must focus on ensuring the optimal execution,” says Dr. Hirsch-Matsioulas. 

Dr. Hirsch-Matsioulas is compiling a report with all the issues that do or may arise. She will then proceed to examine the appropriate solutions for every listed problem, through consultation with relevant professionals. The aim is to come up with suitable solutions for the preservation of the elderly’s right to good health and a dignified life, as well as the preservation of the rights of the animals. Once completed, she will present the list to policy makers to advance the legislation, with the aim that the Ministry of Construction and Housing can adopt the law on a permanent basis. 

The arrived upon solutions will be offered, and hopefully adopted, by additional countries as well.

 

Emotional, cognitive and health benefits enjoyed by both parties. Photo: Vika Minkowitz Mualem

Across Generations and Species

“We intend to visit senior homes, observe and learn, and then to provide cultural programs with positive and educational messages on how to co-exist in a community with multiple living species,” offers Dr. Hirsch-Matsioulas.

“Education is central for promoting change, and we would like to cultivate a new atmosphere on ground through a series of lectures. Children and youth are oftentimes leading agents of change, and we may end up including the grandchildren in this effort.” 

“Beyond our firm conviction that the elderly shouldn’t have to part with their pets, that are to them like family members for all intents and purposes, the Clinic also makes sure that the animals’ interests are represented. Forced removal of an animal from a warm and loving home can cause him or her great suffering, especially in old age,” adds Adv. Keren.

“In recent years, there’s been a growing recognition in Israel of animal rights and their welfare, as key considerations in decision-making pertaining to them. We will continue to develop this trend, whereby the animal is regarded as a subject with his or her own rights, each animal representing a world of his or her own and worthy of protection in and by him- or herself.”

 

Dr. Orit Hirsch-Matsioulas and her good friend, Shenef. 

Featured image: Family and flatmates. Photo: Noah Toledano

For the first time: The “God Particle” has been characterized in its decay into a pair of charm quarks

TAU researchers contribute further understanding of elusive elementary particle that gives mass to everything in the universe

Physicists worldwide have been captivated by the Higgs boson particle, also known as the “God Particle”. Its discovery a decade ago made waves in the physics community, and had researchers curious to learn more about its properties. TAU researchers have now succeeded, as part of a groundbreaking study, to describe a rare physical process through which the Higgs boson decays into a pair of rare elementary particles. The rate of this decay process can now be characterized more precisely and completely than before.

The new study was conducted as part of the ATLAS experiment at the Large Hadron Collider (LHC) at CERN (Geneva) by Prof. Erez Etzion and doctoral students Guy Koren, Hadar Cohen and David Reikher from the Raymond and Beverly Sackler School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, at Tel Aviv University. It was a collaboration with the research team of Prof. Eilam Gross from the Weizmann Institute of Science and others.

Learning More About Forces in Nature

Over fifty years ago, physicists Prof. Peter Higgs and Prof. Francois Englert (who since 1984 has been a Sackler Fellow by special appointment in the TAU School of Physics and Astronomy) estimated that a new particle might exist whose field “provides the mass” to the elementary particles in our world.

In 2012, the end of a 30-year hunt for the Higgs boson was celebrated. Israeli researchers were senior partners in this discovery, and Prof. Halina Abramowicz, who was part of the TAU team, said “The discovery of the Higgs-like particle affirms the world view that the universe is made up of straightforward, symmetrical laws and that humans are the byproduct of disruptions in that symmetry.” Higgs and Englert won the Nobel Prize the following year.

The Challenge of Creating the Higgs boson 

In the particle accelerator, pairs of protons are made to collide with each other at extremely high velocities. In such energetic collisions, various interesting processes can occur, from which, one can learn about the nature of our universe. The way in which these processes are investigated, is by means of a complex array of particle detectors placed around the points of collision, enabling reconstruction of the types of particles that are generated during the collision, as well as their features. A vast range of processes can occur during the collisions, and each has its own unique “signature” in the detector. In order to extract rare events and acquire new insights about the elementary particles and forces in nature, large amounts of statistical data must be collected (i.e. a very large number of collisions must be observed).

The Higgs boson is, as mentioned, a relatively heavy elementary particle, but can be created in collision between protons, as long as the accelerator’s energy is high enough. Immediately after its creation, it decays into lighter particles.

“It is interesting to investigate into which types of particles the Higgs decays, and with what frequency it decays into each type of particle,” says Guy Koren. “To help answer that question, our group is trying to measure the rate at which the Higgs boson decays into particles called ‘charm quarks’.” Quarks are a specific type of particles that share similar features. They compound, for instance, the protons and neutrons, which are in the nuclei of atoms. Koren continues to explain that measuring the decay of Higgs boson into ‘charm quarks’ is not a simple mission, for two reasons: 1. Only one out of billions of collisions [between protons] result in the creation of Higgs bosons. Furthermore, only three percent of the Higgs bosons that do emerge proceed to decay into charm quarks. 2. Five additional types of quarks exist, and they all leave similar signatures in the detectors. So, even when the process does take place, it is very hard to identify.

More Information About The Rate of Decay 

Despite all the collisions that have been collected since 2012, the group from Tel Aviv has not yet identified enough decays of Higgs bosons into charm quarks to measure the rate of the process with the required statistical accuracy.

Nevertheless, sufficient data has been accumulated to state what the maximal rate of the process is with respect to the theoretical predictions. A rate of decay higher than the predicted rate would constitute a first important indicator for “new” physics or expansion of the currently accepted model – the standard model of elementary particles. From the current measurement, the researchers conclude (with a well-defined statistical certainty) that there is no chance that the rate of decay of the Higgs boson into charm quark is 8.5 (or more) times higher than the theoretical predictions, otherwise enough such decays would have been observed in order to measure it. “This is the first time that anyone has ever succeeded in saying something important about the rate of this specific decay based on a direct measurement of it, therefore it is a very important and significant statement in our field,” explains Koren

The research is not yet over, however. Higgs’ decays into quarks of smaller masses have yet to be observed. As a result, the researchers cannot be certain that the same ‘rules’ apply to quarks from those generations. “If it should appear that the Higgs boson decays at a rate that is not proportional to mass (squared) of the particles, there could be far-reaching implications for our understanding of the universe,” explains Prof. Etzion.

Featured image: Illustration: The European Organization for Nuclear Research (CERN)’s LHC accelerator, by which the Higgs boson was detected in 2012 in the ATLAS and CMS experiments

The Sky is Not the Limit

Tel Aviv University Builds and Launches a Nanosatellite into Space

The TAU-SAT1 nanosatellite was devised, developed, assembled, and tested at the new Nanosatellite Center, an interdisciplinary endeavor of the Faculties of Engineering and Exact Sciences and the Porter School of the Environment and Earth Sciences. TAU-SAT1 is currently undergoing pre-flight testing at the Japanese space agency JAXA. From Japan, the satellite will be sent to the United States, where it will “hitch a ride” on a NASA and Northrop Grumman resupply spacecraft destined for the International Space Station in the first quarter of 2021. Once at the station, a robotic arm will release TAU-SAT1 into a low-earth orbit (LEO) around the Earth, approximately 400km above the Earth.

Small satellite – a big step

“This is a nanosatellite, or miniature satellite, of the ‘CubeSat’ variety,” explains Dr. Ofer Amrani, head of Tel Aviv University’s miniature satellite lab. “The satellite’s dimensions are 10 by 10 by 30 cm, the size of a shoebox, and it weighs less than 2.5 kg. TAU-SAT1 is the first nanosatellite designed, built and tested independently in academia in Israel.”

TAU-SAT1 is a research satellite, and will conduct several experiments while in orbit. Among other things, Tel Aviv University’s satellite will measure cosmic radiation in space.

“We know that that there are high-energy particles moving through space that originate from cosmic radiation,” says Dr. Meir Ariel, director of the university’s Nanosatellite Center. “Our scientific task is to monitor this radiation, and to measure the flux of these particles and their products. It should be understood that space is a hostile environment, not only for humans but also for electronic systems. When these particles hit astronauts or electronic equipment in space, they can cause significant damage. The scientific information collected by our satellite will make it possible to design means of protection for astronauts and space systems. To this end, we incorporated a number of experiments into the satellite, which were developed by the Space Environment Department at the Soreq Nuclear Research Center.”

Satellite station on the roof of the faculty building

A challenge that presented itself was how to extract the data collected by the TAU-SAT1 satellite. At an altitude of 400 km above sea level, the nanosatellite will orbit the earth at a dizzying speed of 27,600 km per hour, or 7.6 km per second. At this speed, the satellite will complete an orbit around the Earth every 90 minutes.  “In order to collect data, we built a satellite station on the roof of the engineering building,” says Dr. Amrani. “Our station, which also serves as an amateur radio station, includes a number of antennas and an automated control system. When TAU-SAT1 passes ‘over’ the State of Israel, that is, within a few thousand kilometer radius from the ground station’s receiving range, the antennas will track the satellite’s orbit and a process of data transmission will occur between the satellite and the station. Such transmissions will take place about four times a day, with each one lasting less than 10 minutes. In addition to its scientific mission, the satellite will also serve as a space relay station for amateur radio communities around the world. In total, the satellite is expected to be active for several months. Because it has no engine, its trajectory will fade over time as the result of atmospheric drag – it will burn up in the atmosphere and come back to us as stardust.”

And this is just the beginning

But launching the TAU-SAT1 nanosatellite is only Tel Aviv University’s first step on its way to joining the “new space” revolution. The idea behind the new space revolution is to open space up to civilians as well. Our satellite was built and tested with the help of a team of students and researchers. Moreover, we built the infrastructure on our own – from the cleanrooms, to the various testing facilities such as the thermal vacuum chamber, to the receiving and transmission station we placed on the roof. Now that the infrastructure is ready, we can begin to develop TAU-SAT2. The idea is that any researcher and any student, from any faculty at Tel Aviv University, or outside of it, will be able to plan and launch experiments into space in the future – even without being an expert in the field.

In the last few years Tel Aviv University has been working on establishing a Nanosatellite Center to build small “shoebox” size satellites for launch into space. “We are seeing a revolution in the field of civilian space”, explains Prof. Colin Price, one of the academic heads of the new center.  “We call this new space as opposed to the old space where only giant companies with huge budgets and large teams of engineers could build satellites.  As a result of miniaturization and modulation of many technologies, today universities are building small satellites that can be developed and launched in less than 2 years, and at a fraction of the budget in the old space”, Price continues. “We have just completed the building of Tel Aviv University’s first nano-satellite, and it is ready for launch.”

It will have been only two years from the moment that we began all of the above-mentioned activities until the satellite is launched – this is an achievement that would not have been possible without the involvement of many people: the university administration, who supported the project and the setting up of the infrastructure on campus, Prof. Yossi Rosenwaks, Dean of the Faculty of Engineering, Professors Sivan Toledoand Haim Suchowski from the Faculty of Exact Sciences, and, most importantly, the project team that dealt with R&D around the clock: Elad Sagi, Dolev Bashi, Tomer Nahum, Idan Finkelstein, Dr. Diana Laufer, Eitan Shlisel, Eran Levin, David Greenberg, Sharon Mishal, and Orly Blumberg.

TAU-SAT1 Team here on campus, before leaving to the airport

Featured image: Last inspections in the clean room. TAU SAT1

Tel Aviv University Researcher Heads a Committee in Charge of the Future of the European Science

CERN Council unanimously decided to update its scientific strategy – according to the recommendation of a committee headed by Prof. Halina Abramowicz

After two years of prolonged discussions of physicists from across Europe and outside the continent, the European Organization for Nuclear Research (CERN) decided lately to update its strategy, according to the recommendation of the European Strategy for Particle Physics Update Committee (EPPSU) – headed by Prof. Halina Abramowicz from Tel Aviv University.

Prof. Halina Abramowicz: “As the head of the committee I had to coordinate the effort in its whole. At the beginning of our work at the committee, we clarified the needs of the particle physicist’s scientific community in each country, and afterwards we conducted an international analysis of the proposals’ quality.  After two years of discussions, the European scientific community reached an agreement. Fortunately, CERN Council decided to endorse the committee’s recommendations. Those are heavy financial and political decisions that are made once in a decade, and it’s not every day that Israel finds itself heading a policy-outlining committee.”

The committee headed by Prof. Abramowicz set, in effect, the CERN strategy for the fourth decade of the 21st century, after the Large Hadron Collider (LHC) research program, world’s largest particle collider, would end. The committee decided that the European particle physics’ main goal would be an electron-positron collider which will be a “power house” for the Higgs Boson particle that was discovered for the first time at the LHC. It would be followed by a new, 62-mile-long, proton-proton collider that was proposed and which is expected to surpass the energy production records of the LHC. Its cost is estimated at 25 billion dollars.

The Higgs Boson particle was discovered at the LHC in 2012 and caused a revolution in particle physics. Not only is the Higgs Boson the last missing part in the standard particle model, but it also was proven to be completely different from any other particle previously measured. The research regarding the Higgs Boson is just taking its first steps, but the particle properties, such as its light weight, already raise profound questions that the standard model cannot explain. It is very hard to accurately measure the particle, also known as the god particle, and hopefully, the new approach, recommended by Prof. Abramowicz’s committee, will allow more accurate measurements of the Higgs Boson, thus paving the way for new insights about the basic fabric of the universe.

“We are trying to understand how the universe started and what it’s made of – this is basic science,” explains Prof. Abramowicz. “But, in order to understand this we need technological advances and developments, some of which are being implemented afterwards in other fields as well. For example, the PET CT, a medical tomography test used worldwide at medical centers, was developed due to projects similar to the LHC, as well as several significant developments in Big Data processing in the Cloud Computing field. In order to examine the feasibility of the new collider, CERN works these days on developing world first magnets which will use high temperature super conductors – a development which can cause a revolution in transportation, with floating magnet trains, and those are just a few examples. We don’t know which doors would be opened to us with this new challenge that the committee made CERN face – both in basic science and in collaboration with the industry, which will be needed to build the collider.”

To achieve the ambitious ESPPU goals, particle physicists are being called to execute vigorous research and development programs (R&D) of advanced collider technologies, particularly regarding high level and high temperature super conductors. In addition, the roadmap includes R&D of plasma wakefield acceleration, as well as an international research with the option of realising a muon collider and R&D of advanced detectors.

“Israel joined CERN as a full member in 2014, and is the first and only non-European country to join,” says Prof. Abramowicz, who takes part in the “ATLAS” experiment at the LHC. “It’s our national lab. Researchers from Tel Aviv University, the Ben-Gurion University, the Hebrew University, Technion – Israel Institute of Technology, and Weizmann Institute are senior partners running experiments at the LHC. Therefore, recommendations made by the EPPSU committee are important not only to science but also to our scientific community, technology, economy and our society. ”

Featured image: Prof. Halina Abramowicz

A new, revolutionary way to simplify complex scientific calculations

Your zip software could calculate entropy as well as a supercomputer, TAU researchers say

Researchers at Prof. Roy Beck’s lab have figured out a simple and accessible solution to a problem that even supercomputers struggle with: measuring entropy, the level of molecular disorder or randomness in a complext system. In complex physical systems, the interaction of internal elements is unavoidable, rendering entropy calculation a computationally demanding, and often impractical, task. The tendency of a properly folded protein to unravel, for example, can be predicted using entropy calculations. Now, a new Tel Aviv University study proposes a radically simple and efficient way of calculating entropy — and it probably exists on your own computer. “We discovered a way to calculate entropy using a standard compression algorithm like the zip software we all have on our computers,” explains Prof. Roy Beck of TAU’s School of Physics and Astronomy. “Supercomputers are used today to simulate the folding or misfolding of proteins in diseased states. Our study demonstrated that by using a standard compression algorithm, we can provide new insights into the physical properties of these proteins by calculating their entropy values using a compression algorithm.

A veriety of new solutions

“Having the ability to calculate entropy meets an urgent need to harness the incredible power of computer simulations to address urgent, timely problems in science and medicine,” Prof. Beck adds. The research was led by him and conducted by TAU PhD students Ram Avinery and Micha Kornreich. According to Prof. Beck, the research has endless applications. From biomedical simulations to basic research conducted in physics, chemistry or material science, the new algorithm would be simple to use on any computer. “A high school student used our concept to calculate the entropy of a complex physical system — the XY model,” says Prof. Beck. “Although this is considered a challenging problem with regard to entropy, the student accomplished it with very little guidance. This demonstrates how easily this method can be used by almost anybody to solve very interesting problems.”

A by-the-way discovery

The idea for the computational method first came about when Prof. Beck’s students, Avinery and Kornreich, discussed entropy from the point of view of information theory. They wondered how well this idea might work in practice rather than in theory. “They simulated a few standard physical systems with entropy values they can compare to,” says Prof. Beck. “Soon they found that the simulation data file size after compression rises and falls just as the expected entropy should. Shortly after that, they realized they could convert the compressed file size into a usable value — the physical entropy. Surprisingly, the simple conversion they used was valid for all the systems studied.” The researchers are currently expanding the application of their methodology to a wide and varied selection of systems. “Since we started working and talking about our work, we have been approached by many researchers from very different fields, asking us to help them calculate entropy from their data,” concludes Prof. Beck. “For now, we are concentrating on simulation of protein folding, a timely and urgent topic that can benefit tremendously from our discovery.”

TAU launches new center for quantum science & tech

The center will bring together twenty labs from across campus and offer academic programs as well as promote international ties

Tel Aviv University is proud to launch a new Center for Quantum Science and Technology, announced during the research workshop “From Quantum Computing to Quantum Chemistry.”
According to Tel Aviv University Rector, Prof. Yaron Oz: “The quantum revolution is knocking on our door, and many people expect it to be just as great and significant as the industrial and digital revolutions, completely transforming our technology and way of life,”
Prof. Oz also added that “Quantum theory, first developed more than a century ago, deals with phenomena at the level of tiny particles such as electrons and photons. Many quantum phenomena contradict human intuition and our experience in day to day reality.
“Leading TAU scientists, like Prof. Yakir Aharonov, have contributed significantly to our understanding of these phenomena. Applied quantum research is a relatively new field that is rapidly gaining momentum both in Israel and worldwide, and this is the right time to put considerable effort into it.”

Twenty labs from different disciplines

The new Center for Quantum Science and Technology is expected to bring together about twenty research labs from different faculties across campus, from a diverse array of scientific disciplines.
The Center will combine three main purposes: academic programs in relevant tracks such as quantum computing and quantum communication, designed to attract the best young minds to this innovative field, research activities based on TAU’s multidisciplinary nature, enabling collaborations between researchers from many different disciplines: computing, materials, sensors, chemistry, physics and mathematics, and later also economics, business and more.
It will also work forming international ties with research centers and business corporations – including giants like Google, IBM and Microsoft, who are developing quantum technologies, alongside potential consumers (like the financial sector), who must prepare for the advent of quantum computing.
The Center will also recruit new faculty members, organize conferences and workshops, and offer scholarships and fellowships for students.

What will life look like in 2030?

From surgery to household tasks, humanity is about to see its daily life transformed. Prof. Irad Ben-Gal is planning for the biggest unknowns of our future.

Only twenty years ago, connecting to the internet meant sitting next to a desk and sorting through various cables, when downloading a photo could take ten minutes or more. Today, it seems like everything happens online – it’s where we find our friends and where elections and revolutions are won and lost.

But as we spend more and more of our lives in cyberspace, the question is: what’s next? The rate of change and growth is so rapid, even ten years can make a huge difference. Humanity’s biggest “unknown” is the immediate future: what can we do to foresee and cope with the next set of changes and challenges?

To answer these questions, Tel Aviv University partnered with Stanford University to create the Digital Living 2030 program. It will connect engineering students from Israel and the U.S. to lead the development of infrastructures, processes, methods and algorithms, hardware and software components, to create and support this new world. 

When our digital self goes grocery shopping

According to Prof. Irad Ben-Gal, from the Department of Industrial Engineering, a founder of the Digital Living 2030 project, we’ll see many changes over the next ten years. Some for the better, some, potentially, for the worst.

What are the biggest changes waiting around the corner?

“In general,” Prof. Irad Ben-Gal said. “A lot of sectors will see accelerated progress in the coming decade, such as autonomous transportation, personal digital medicine, smart cities, industry (robots and artificial intelligence), virtual environments and applications that affect our personal lives.

 

“On a personal level, we will witness a more complete integration between our digital world and our physical world. People will live simultaneously in both worlds when their digital self will perform different tasks for them – it will learn, make decisions (in collaboration with other digital agents), perform social interactions, and more.”

What about our lives will be better by 2030?

“In principle, a large section of society will benefit from having a better life: personalized services such as autonomous transportation, personalized medicine, a longer and healthier life, increased leisure time, more efficient handling of information overload, and a variety of new and interesting professions.”

What are the biggest problems we’ll have to deal with?

“First and foremost, there is a danger of widening economic and social gaps between different people – experts and laymen in the digital world, between the rich and the poor, between developed and developing countries, between technologically advanced and non-technological sectors…

But we’ll have to cope with all of this just like previous generations had to cope with their own technological leaps forward. Every innovation introduces new risks, from the discovery of fire and stone tools, to dynamite, to artificial intelligence.”

What about 2130? On the basis of what you know today, what will life look like in a century?

“Nothing is truly certain, of course, but there’s one thing I’m sure of: the integration of the digital world with the physical world will be complete.

 

 

“The individual will not only be a physical entity represented in digital worlds (as we are today represented in social networks) but a perfect dual entity. The digital entity will be aware, make independent decisions, learn on its own, work in parallel with the physical entity and be rewarded accordingly, and will contain elements of emotions and awareness that don’t exist today.”

So, what are you most looking forward to in the coming decade, or the coming century? And how will you prepare? Are you looking forward to outsourcing your grocery shopping to your digital avatar or dreading having to be even more involved in cyberspace than you already are?

One thing’s for sure: the engineers taking part in Digital Living 2030 will do their best to make sure we’re as ready as it’s possible to be.

Better maps for better self-driving cars?

New research on object detection breaks with long-held principles of radar technologies

Radar technologies were originally designed to identify and track airborne military targets. Today they’re more often used to detect motor vehicles, weather formations and geological terrain.

Until now, scientists have believed that radar accuracy and resolution are related to the range of frequencies or radio bandwidth used by the devices. But a new Tel Aviv University study finds that an approach inspired by optical coherence tomography (OCT) requires little to no bandwidth to accurately create a high-resolution map of a radar’s surrounding environment.

“We’ve demonstrated a different type of ranging system that possesses superior range resolution and is almost completely free of bandwidth limitations,” says Prof. Pavel Ginzburg of TAU’s School of Electrical Engineering, one of the principal authors of the study. “The new technology has numerous applications, especially with respect to the automotive industry. It’s worth noting that existing facilities support our new approach, which means that it can be launched almost immediately.”

The new study was conducted jointly by Prof. Ginzburg, Vitali Kozlov, Rony Komissarov and Dmitry Filonov, all of TAU’s School of Electrical Engineering. 

Preventing the traffic jams of the future

It was commonly believed that radar resolution was proportional to the bandwidth used. Meaning, a good, accurate radar, required a lot of bandwidth, something that could become a limited resource in the future.

“Our concept offers solutions in situations that require high-range resolution and accuracy but in which the available bandwidth is limited, such as the self-driving car industry, optical imaging and astronomy,” Kozlov explains. “Not many cars on the road today use radars, so there’s almost no competition for allocated frequencies. But what will happen in the future, when every car will be equipped with a radar and every radar will demand the entire bandwidth?

“We’ll find ourselves in a sort of radio traffic jam. Our solutions permit drivers to share the available bandwidth without any conflict,” Kozlov says.

The TAU researchers have now demonstrated that low-bandwidth radars can achieve similar performance at a lower cost and without broadband signals by exploiting the coherence property of electromagnetic waves. The new “partially coherent” radar, which uses significantly less bandwidth, is as effective as a standard “coherent” radars in experimental situations.

Using radar for rescue

“Our demonstration is just the first step in a series of new approaches to radiofrequency detectors that explore the impact of low-bandwidth radars on traditional fields,” Prof. Ginzburg concludes. “We intend to apply this technology to previously unexplored areas, like rescue operations — sensing if an individual is buried in a collapsed building — or street mapping — sensing if a child is about to cross the street behind a bus that conceals him.”

Research for the study was supported by an ERC grant and Kamin, and it was conducted at TAU’s Radio Physics Laboratory’s anechoic chamber.

What’s in a pi?

March 14h is International Pi Day. Why do we celebrate it? Is pi still relevant 4,000 years after being discovered? And is peach pie better than cherry?

What’s the best kind of pie? And what’s the perfect crust-to-filling ratio? Mankind has been struggling with these questions since the dawn of baked goods, which is probably about as long as the number pi has been known to us.

Although Pi Day was first celebrated in the 1980s, the number pi (represented as the Greek letter π) was first discovered about 4,000 years ago. The ratio of a circle’s circumference to the circle’s diameter, pi is always the same, whether you’re measuring a penny or a truck tire. Not only that, but pi is an “irrational” number – no matter how many digits of pi we calculate, we’ll never be able to predict which digit comes next. 

We decided to ask Ofir Gorodetsy, a PhD student at the School of Mathematical Sciences at Tel Aviv University, about the significance of pi.

“The decimal expansion of π starts with 3.14,” Ofir said. “Which is why we celebrate Pi Day on March 14th every year. And aside from being known to Ancient Egyptians and Babylonians, pi is also mentioned in the Hebrew Bible, where the approximation 3 is used to measure the circumference of a circle.”

Too much pi?

Although most people are familiar with pi as being 3.14, mathematicians have been struggling to find the other digits of pi for centuries. According to Ofir, “figuring out the digits of pi gets pretty difficult after a dozen or so. Many scholars from all over the world have tried to find more and more digits: Archimedes, Liu Hui, Brahmagupta, Fibonacci, Isaac Newton. In the 18th century a mathematician even came up with proof that the digits of pi don’t follow any pattern, so they never repeat in any predictable way.”

According to Ofir, figuring out the digits of pi is much easier these days. Even freshmen at university can calculate as many digits as they’d like, using modern tools.

But the magic of pi is not only its length, but how common it is in the natural world. The disk of the sun, the pupil of our eyes, the ripples in a pond, even the way rivers tend to bend and flow can be described using pi. It’s used in the work of biologists, engineers, geographers, physicsts, mathematicians. Almost every discipline that deals with the world around us crosses paths with this unique number at some point. 

So why do we celebrate Pi Day? Probably because math is at its most delicious when it’s fresh out of the oven.

A match made in Megiddo

How the chemistry between archaeology and physics researchers led to groundbreaking discoveries about biblical history

Sometimes when you’ve stopped looking for a solution is exactly when it pops up. Israel Finkelstein, Jacob M. Alkow Professor of the Archaeology of Israel in the Bronze and Iron Ages, Sonia and Marco Nadler Institute of Archaeology, discovered a very interesting finding in 1998, at the archaeological excavation of Megiddo. He noticed a dig participant who did not quite fit the profile of a typical university undergraduate. 

“I sniffed around and learned that this particular student was actually a TAU professor flying under the radar. He turned out to be a very important ‘find,’” smiles Finkelstein. That student, incumbent of the Wolfson Chair in Experimental Physics Eli Piasetzky, Raymond and Beverly Sackler Faculty of Exact Sciences, was pursuing a degree in archaeology. Prof. Finkelstein pulled him aside to talk, and so began a research partnership that is still active two decades later.  

When were early Biblical texts written?

The archaeological issue of the day was mapping the chronology of the Iron Age in ancient Israel. Finkelstein challenged Piasetzky to improve the dating of remains from biblical times by using the radiocarbon method. The findings, published in professional and lay publications worldwide, rendered a new timeline of ancient Israel with lasting ramifications for biblical studies.

“Until then, the dating of texts was based on Biblical considerations,” explains Prof. Finkelstein, adding, “You can say that Biblical history was the path of the researchers, and archeology was used as a tool to prove the Bible stories were true.” He said. His article caused an uproar among researchers around the world, and he realized that he needed a more accurate dating tool and a talented mathematician to help him. Prof. Finkelstein presented his friend with a challenge – to accurately date the findings discovered in the excavations and to prove his claims.

Using the radiocarbon dating method on hundreds of items collected and tested, Prof. Piasetzky and Prof. Finkelstein presented a new and more accurate timeline in the history of ancient Israel, which was published in the New York Times, and had long-term implications for the study of the Biblical period since then.

 

The excavation site at Tel Megiddo, where it all began

Algorithms for reading ancient inscriptions

Prof. Piasetzky and Prof. Finkelstein continue their quest to reconstruct ancient history. As reported by The New York Times, they are conducting analyses to help better decipher ink inscriptions on potsherds, known as ostraca that were unearthed at an ancient fortress in the deep desert of Arad in southern Israel.

“The citadel of Arad stands like a time capsule: Active about 2,600 years ago, it was a relatively short-lived, godforsaken outpost, a five-day journey from Jerusalem, populated by maybe 30 soldiers,” describes Finkelstein. “Who inscribed the potsherds found there? Who read them? The ostraca teach us about government and about literacy in ancient Judah. If we determine when writing became a tool used by a wide swathe of society, we can shed light on when early Biblical texts were written.”

A shopping list from thousands of years ago

Prof. Piasetzky and Prof. Finkelstein have put together a team of archaeologists, historians, physicists, mathematicians, and computer scientists to analyze handwriting and determine just how many hands penned the Arad ostraca.

To do so, they employ physics techniques of multispectral imaging to reveal inscriptions and improve readability. Next, they compare handwriting by using algorithms specially developed by the team. What they found there was surprising: the new lines discovered were a letter requesting the issuance of wine and food from the warehouses of the Tel Arad fortress to one of the military units in the area. The recipient of the letter was the warehouse clerk, while the address was an officer from Beersheba.

Beyond the information about what people used to eat and drink during that time, the researchers revealed that even quartermasters knew how to read and write, and also learned a few new words that don’t appear in the Bible. “From the content of the letters we learn that literacy permeated even the low ranks of the military administration of the kingdom. If we extrapolate this data to other areas of Judea, and assume that this was the case in the civil administration and among the clergy, the level of literacy is considerable. This level of literacy is a reasonable background for the composition of Biblical texts,” explains Prof. Finkelstein.

Facing the future

After studying the past, Prof. Finkelstein and Prof. Piasetzky explain what can be done with these special technologies in the 2000s. “One may ask why a student of mathematics would be interested in developing tools for handwriting analysis of ancient inscriptions,” Prof. Piasetzky says. “But this type of analysis is also acutely needed today by, say, lawyers, banks, and the police. Furthermore, we’re finding solutions for the challenges of deciphering ink inscriptions found on uneven clay surfaces with faded markings and missing pieces. If our algorithms can analyze decayed inscriptions, think what they can do with modern-day handwriting on flat clean paper surfaces.”

Prof. Finkelstein adds: “With handwriting we face a problem of subjectivity. Scholars – all of us – come with preconceptions. We can convince ourselves that we see this or that particular letter. The computer does not have preconceptions. It measures length of strokes and angles, making numerical comparisons. Our next step is to integrate multispectral imaging at digs. This could dramatically improve excavation methodologies by determining on site if a potsherd is treasure or junk. One inscription can change the way we understand history.”

Featured image: Prof. Eli Piasetzky and Prof. Israel Finkelstein talk about how it all started

Victoria

Tok Corporate Centre, Level 1,
459 Toorak Road, Toorak VIC 3142
Phone: +61 3 9296 2065
Email: [email protected]

New South Wales

Level 22, Westfield Tower 2, 101 Grafton Street, Bondi Junction NSW 2022
Phone: +61 418 465 556
Email: [email protected]

Western Australia

P O Box 36, Claremont,
WA  6010
Phone: :+61 411 223 550
Email: [email protected]