Skip to main content

Tag: Life Sciences

TAU Discovery Decodes a Rare Neurological Disease

This breakthrough could pave the way for neurological treatments.

Researchers at Tel Aviv University have developed an innovative research model that allowed them to decode the mechanism underlying a severe and rare neurological disease. The disease is characterized by symptoms such as epilepsy, developmental delay, and intellectual disability.

According to the researchers: “Decoding the disease mechanism is a critical step toward developing treatments targeting specific cellular functions for this disease and other conditions with similar mechanisms affecting cellular energy production”.

The research was led by Tel Aviv University’s Prof. Abdussalam Azem, Dean of the Wise Faculty of Life Sciences, in collaboration with Prof. Uri Ashery and PhD student Eyal Paz from the School of Neurobiology, Biochemistry and Biophysics at the Wise Faculty of Life Sciences and the Sagol School of Neuroscience. Additional contributors included Dr. Sahil Jain and Dr. Irit Gottfried from the School of Neurobiology, Biochemistry, and Biophysics at Tel Aviv University, Dr. Orna Staretz-Chacham from the Faculty of Health Sciences at Ben-Gurion University, Dr. Muhammad Mahajnah from the Technion, and researchers from Emory University in Atlanta, USA. The findings were published in the prominent journal eLife.

TIMM50 Mutation Linked to Rare Brain Disorders

Prof. Azem explains: “The disease we studied is caused by a mutation in a protein called TIMM50, which plays a crucial role in importing other proteins into the mitochondria—the organelle considered the cell’s energy powerhouse. The human mitochondria operate with about 1,500 proteins (approximately 10% of all human proteins), but only about 13 of them are produced within the mitochondria itself. The rest are imported externally through various mechanisms. In recent years, mutations in the TIMM50 protein, which is responsible for importing about 800 proteins into the mitochondria, were found to cause severe and rare neurological disease with symptoms like epilepsy, developmental delay, and intellectual disability”.

Prof. Ashery adds: “Protein import into the mitochondria has been extensively studied over the years, but how a mutation in TIMM50 affects brain cells was never tested before. To investigate this for the first time, we created an innovative model using mouse neurons that mimics the disease caused by the TIMM50 protein mutation. In this study, we significantly reduced the expression of the protein in mouse brain cells and observed its impact on the cells”.

How Does a Protein Defect Link Energy Loss to Epilepsy?

Eyal Paz explains: “The impairment of the protein led to two main findings: a reduction in energy production in the neurons, which could explain the developmental issues seen in the disease and an increase in the frequency of action potentials (the electrical signals that transmit information along neurons and enable communication between them). This increase in action potential frequency is known to be associated with epilepsy. The change in frequency is likely caused by significant damage to two proteins that function as potassium channels. Imbalances in potassium levels can lead to life-threatening conditions, such as arrhythmias, cardiac arrest, and muscle weakness, potentially leading to paralysis. These potassium channels may serve as potential targets for future drug treatments for the disease”.

Prof. Azem concludes: “Our study decodes the mechanism of a severe and rare neurological disease caused by a mutation in a protein critical for importing proteins into the mitochondria. Understanding the mechanism is a crucial step toward treatment, as it enables the development of drugs targeting the specific issues identified. Additionally, we created a new research model based on mouse neurons that significantly advances the study of protein import into mitochondria in brain cells. We believe that our findings, combined with the innovative model, will enable more in-depth research and the development of treatments for various neurological diseases caused by similar mitochondrial dysfunction mechanisms”.

What Can Locusts Teach Us About Efficiency in Design?

Research shows locusts’ digging valves are built just right for their task.

Researchers at Tel Aviv University examined the mechanical wear of digging valves located at the tip of the female locust’s abdomen, used to dig pits for laying eggs 3 to 4 times during her lifetime. They found that, unlike organs with remarkably high wear resistance, such as the mandible (lower jaw), the valves wear down substantially due to intensive digging.

The researchers: “This is an instructive example of the ‘good enough’ principle in nature. Evolution saw no need to invest extra energy and resources in an organ with a specific purpose that performs its function adequately. We, humans, who often invest excessive resources in engineered systems, can learn much from nature”.

The study was led by Dr. Bat-El Pinchasik from the School of Mechanical Engineering and Prof. Amir Ayali from the School of Zoology at the Wise Faculty of Life Sciences, the Sagol School of Neuroscience and the Steinhardt Museum of Natural History at Tel Aviv University. Other participants included: PhD student Shai Sonnenreich from TAU’s School of Mechanical Engineering, as well as researchers from the Technical University of Dresden in Germany, Prof. Yael Politi and a postdoc in her group, Dr. Andre Eccel Vellwock. The article was published in the prestigious journal Advanced Functional Materials.

Left to right: Prof. Amir Ayali, Dr. Bat-El Pinchasik & PhD student Shai Sonnenreich.

Dr. Pinchasik: “In my lab, we study mechanical mechanisms in nature, partly to draw inspiration for solving technological problems. Recently we collaborated with locust expert Prof. Amir Ayali in a series of studies, to understand the mechanism used by the female locust for digging a pit to lay her eggs. This unique mechanism consists of two shovel-like valves that open and close cyclically, digging into the soil while pressing the sand against the walls”.

Prof. Ayali: “We know that many mechanisms in the bodies of insects in general, and locusts in particular, are exceptionally resistant to mechanical wear. For example, the locust’s mandibles, used daily for feeding, are made of a highly durable material. The digging valves, on the other hand, while subjected to substantial shear forces during digging, are used only 3 or 4 times in the female’s lifetime – when she lays eggs. In this study, we sought to discover whether these digging valves, made of hard cuticular material, were also equipped by evolution with high resistance to mechanical wear”.

To address this question, the researchers examined the digging valves in three different groups of female locusts: young females that had not yet laid eggs, mature females kept in conditions that prevented them from laying eggs – to test whether age alone causes wear and adult females that had already laid eggs 3 or 4 times. To analyze the internal structure and durability of the digging valves, the researchers used several advanced technologies: confocal microscopy, 3D fluorescent imaging, and a particle accelerator (synchrotron) in collaboration with the German team. The findings indicated significant signs of wear in the valves and a lack of elements associated with high resistance to mechanical wear. Notably, no reinforcing metal ions, typical of extremely wear-resistant biological materials, were found in the valves.

Dr. Pinchasik: “A female locust’s biological role is laying eggs three or four times in her life. In this study, we found that evolution has designed her digging valves to meet their task precisely—no more and no less. This is a wonderful example of the ‘good enough’ principle in nature: no extra resources are invested in an organ when they’re not needed”.

“As humans, we can learn much from nature – about conserving materials, energy, and resources. As engineers who develop products, we must understand the need precisely and design an accurate response, avoiding unnecessary overengineering” – Dr. Pinchasik.

Eyes Wide Shut: Bats Can Navigate Long Distances Using Sound Alone

Researchers found that bats can create a mental “sound map” of their environment.

A new study by Tel Aviv University and the Steinhardt Museum of Natural History has proven, for the first time, that bats can navigate in nature over many kilometers using only echolocation, without relying on other senses. The researchers explain: “It’s well-known that bats are equipped with a natural sonar, allowing them to emit sound waves that bounce back from nearby objects, helping them navigate. However, it’s also known that bats use their sense of sight during flight. Laboratory studies have shown that bats can navigate within enclosed spaces using only echolocation — but sonar ‘sees’ only about 10 meters ahead, so what happens under natural conditions, in open areas stretching over many kilometers? Can bats rely solely on echolocation for long-distance navigation?” In this study, that question was explored in depth for the first time.

They Follow the Echo

The research was led by Prof. Yossi Yovel of Tel Aviv University’s School of Zoology, Sagol School of Neuroscience, and Steinhardt Museum of Natural History, along with Dr. Aya Goldshtein, formerly a doctoral student of Prof. Yovel and currently a researcher at the Max Planck Institute in Germany. Additional partners from Tel Aviv University included Prof. Sivan Toledo of the Blavatnik School of Computer Science; Xing Chen, Dr. Eran Amichai, and Dr. Arjan Boonman of the School of Zoology; and Lee Harten of the Sagol School of Neuroscience. Prof. Ran Nathan and Dr. Yotam Orchan of the Hebrew University and Prof. Iain Couzin of the Max Planck Institute in Germany also participated in the study, which was published in the journal Science.

The innovative research carried out over six years, utilized a unique tracking system installed in Israel’s Hula Valley. Using this GPS-like technology, the researchers could track the flight of tiny bats from the species known as Kuhl’s pipistrelle, each weighing only six grams —— the smallest mammal ever to be monitored in this way.

For the study, the researchers collected around 60 bats from their roost in the Hula Valley area and moved them about three kilometers away from the roost — still within their familiar habitat. A tag was attached to each bat, and the eyes of some were covered with a cloth strip, temporarily preventing them from seeing during flight, though they could remove the covering with their feet upon landing. In addition, the researchers employed techniques to temporarily disrupt the bats’ sense of smell and magnetic sense, thereby creating conditions in which they would be able to find their way home using only echolocation. Remarkably, the bats managed to return to their roost without difficulty.

In the second phase, the researchers built a computerized acoustic model of the bats’ natural environment in the Hula Valley. Prof. Yovel explains: “This model is based on a 3D map of the area where the bats navigate, reflecting the echoes that the bat hears as it uses echolocation to journey through its surroundings. In examining the bats’ flight paths, we discovered that they choose routes where the echoes contain a lot of information, which helps them navigate. For example, an area rich in ​​vegetation, such as bushes and trees, returns echoes with more information than an open field, making bats less likely to fly over open terrain. We also found that some areas are characterized by distinct echoes, which are picked up by the bats. These findings strengthened our hypothesis that in any given area, bats know where they are based on the echoes. The bats effectively create an acoustic map in their head of their familiar environment, which includes a variety of active ‘sound landmarks’ (echoes) — just as every sighted person has a visual map of their everyday surroundings”.

פרופ' יוסי יובל

The Reason Behind the Dancing Sunflowers

As they grow, sunflowers “dance” to avoid blocking each other’s sunlight

Flowers have long fascinated scientists and nature enthusiasts alike, not just for their beauty, but also for their subtle, almost imperceptible movements. Over a century ago, Charles Darwin was the first to observe that plants, including flowers, exhibit a kind of cyclical movement as they grow. This movement, seen in both stems and roots, puzzled researchers: Was it just a byproduct of growth, or did it serve a crucial purpose?

A new study by Tel Aviv University, in collaboration with the University of Colorado, Boulder, discovered that plants that grow in dense environments, where each plant casts a shadow on its neighbor, find a collective solution with the help of random movements that help them find optimal growth directions. In this way, the study sheds light on the scientific enigma that has occupied researchers since Darwin, namely the functional role of these inherent movements called circumnutations.

The research was conducted under the leadership of Prof. Yasmine Meroz from the School of Plant Sciences and Food Security at the Wise Faculty of Life Sciences at Tel Aviv University, in collaboration with Prof. Orit Peleg from the University of Colorado Boulder in the USA. The research team included Dr. Chantal Nguyen (Boulder), Roni Kempinski and Imri Dromi (TAU). The research was published in the prestigious journal Physical Review X.

Do flowers have a sense of direction?

Prof. Meroz explains: “Previous studies have shown that if sunflowers are densely planted in a field where they shade each other they grow in a zigzag pattern – one forward and one back – so as not to be in each other’s shadow. This way they grow side by side to maximize illumination from the sun, therefore photosynthesis, on a collective level. Plants know how to distinguish between the shadow of a building and the green shadow of a leaf. If they sense the shadow of a building – they usually don’t change their growth direction, because they ‘know’ that will have no effect. But if they sense the shadow of a plant, they will grow in a direction away from the shadow”.

According to the researchers, Darwin was the first to recognize that all plants grow while exhibiting a kind of cyclical movement known as “circumnutation”, which is observed in both stems and roots. However, until today—except for a few cases, such as climbing plants that grow in large circular movements to find something to grab onto—it was unclear whether this was an artifact or a critical feature of growth. Why would a plant invest energy to grow in random directions?

In the current study, the researchers examined how sunflowers “know” to grow optimally—maximizing sunlight capture for the collective—and analyzed the growth dynamics of sunflowers in the laboratory, where they exhibit a zigzag pattern. Prof. Meroz and her team grew sunflowers in a high-density environment and photographed them during growth, taking pictures every few minutes. The photographs were then combined to create a time-lapse movie. By tracking the movement of each sunflower, the researchers observed that the flowers were “dancing” a lot.

Shake your Tail Petal

Prof. Meroz stated, “As part of our research, we conducted a physical analysis that captured the behavior of each sunflower within the collective, revealing that the sunflowers ‘dance’ to find the optimal angle, ensuring that each flower does not block the sunlight of its neighbor. We quantified this movement statistically and demonstrated through computer simulations that these random movements are used collectively to minimize shadowing. It was also surprising to find that the distribution of the sunflowers’ ‘steps’ was very wide, ranging over three orders of magnitude, from nearly zero displacements to movements of up to two centimeters every few minutes in various directions”.

In conclusion, Prof. Meroz adds: “The sunflower plant takes advantage of its ability to use both small, slow steps and large, fast ones to find the optimal arrangement for the collective. If the range of steps were smaller or larger, the arrangement would result in more mutual shading and less photosynthesis. It’s somewhat like a crowded dance party, where individuals move around to create more space: if they move too much, they’ll interfere with the other dancers, but if they move too little, the crowding problem won’t be solved, leaving one corner of the square overcrowded and the other empty. Sunflowers exhibit a similar communication dynamic—a combination of responding to the shade of neighboring plants and making random movements regardless of external stimuli”.

Animals Experience War Stress Too

TSU study examines the impact of the Israel-Hamas war on wildlife

A new study conducted at Tel Aviv University’s School of ZoologyWise Faculty of Life Sciences and Steinhardt Museum of Natural History reveals that the Israel-Hamas war has had a severe impact on animals. The study, which focused on geckos, found that the sound of explosions from fired rockets induces stress and anxiety in these creatures, leading to a sharp increase in their metabolic rates — an energy cost that, if chronic, may be life-threatening. The researchers hypothesize that these stress responses characterize many other animals, especially those who live in the conflict zones in northern and southern Israel.

The study was led by a team of researchers from TAU’s School of Zoology and Steinhardt Museum of Natural History — Shahar Dubiner, Prof. Shai Meiri, and Prof. Eran Levin — in collaboration with Dr. Reut Vardi of the University of Oxford. The study was published in the journal Ecology.

Energy Changes in Wildlife

Prof. Shai Meiri explains: “The most tragic aspect of war is the loss of human life, among both soldiers and civilians. However, animals are also severely affected, both directly and indirectly, in ways that may threaten their survival. A few weeks before October 7, we began working on a long-term study to measure the rate of energy consumption of small ground geckos of the species Stenodactylus sthenodactylus. We obviously did not foresee the outbreak of the war, but unintentionally, we recorded the energy consumption of five geckos during the rocket barrages launched into Tel Aviv in the first month of the war”.

The study’s findings showed that at the sound of the bombings, the geckos’ metabolic rate jumped to double what it was when they were at rest. Their breathing became faster, and they clearly exhibited signs of stress. The experiment lasted up to four hours after the barrages, yet even within this timeframe the geckos did not calm down and return to their resting levels. Moreover, even after a month of continuous fighting, the geckos did not acclimate to the sound of the explosions — their stress response remained unchanged.

Left to right: Prof. Shai Meiri and Prof. Eran Levin.

Prof. Levin: “A state of stress is detrimental to both humans and animals. To compensate for the increase in oxygen consumption and depletion of energy reserves, animals need to eat more. Even if they manage to find food, in the process they expose themselves to predators and lose opportunities to reproduce. In a situation of ongoing conflict, such as the current reality in Gaza, the Gaza Envelope, and along the Israeli-Lebanese border, the metabolic cost can be significant and have a real impact on the energy reserves and activity periods of reptiles and other animals. This can exacerbate their conservation status, especially for species that are already endangered”.

The researchers note that the findings of this study are consistent with another experiment conducted during Operation Guardian of the Walls, in which they also observed a stress response in a small snake of the species Xerotyphlops syriacus.

Shahar Dubiner concludes: “Our research was conducted in a laboratory at Tel Aviv University and pertained to the reverberations of explosions from interceptions in the Tel Aviv area. However, given the unequivocal results showing symptoms of stress, we can infer that animals that are in the immediate conflict zones in the south and north of the country, where the intensity and frequency of fire are much higher, suffer from significantly more severe stress and anxiety symptoms that may endanger their lives”.

How a Brain Parasite Becomes a Brain Cure

TAU research paves the way to brain healing with parasites

Have you ever imagined that parasites could be beneficial for brain diseases? TAU Researchers have reengineered Toxoplasma gondii, the ‘cat parasite,’ transforming it from a feared threat into a groundbreaking tool for delivering drugs directly to the brain. This surprising innovation not only overturns our expectations but also opens new possibilities for treating neurological disorders.

In a breakthrough study by an international team of scientists led by researchers from Tel Aviv and Glasgow Universities, the ‘cat parasite’ Toxoplasma gondii was engineered to deliver drugs to the human brain. The study was led by Prof. Oded Rechavi from the Department of Neurobiology and the Sagol School of Neuroscience at Tel Aviv University, together with his PhD student Dr. Shahar Bracha, and with Prof. Lilach Sheiner, an Israeli scientist and toxoplasma expert from the University of Glasgow in Scotland. The results were published in the leading scientific journal Nature Microbiology.

“One of the biggest challenges in treating neurological diseases is getting through the blood-brain barrier (BBB),” explains Prof. Rechavi. “It is tough to deliver drugs to the brain via the bloodstream, and this is especially true for large molecules such as proteins, the critical ‘machines’ that carry out many important functions inside the cell”.

Toxoplasma gondii – the ‘cat parasite’

The creative solution proposed by the TAU team utilizes the unicellular parasite Toxoplasma gondii, which can infect a vast variety of organisms, but reproduces only in the guts of cats. The parasite is very effective in infecting humans, with an estimated third of the global population infected at some point in their lives. Prof. Rechavi explains: “Most people don’t even feel the infection or only experience mild flu-like symptoms.

Dormant Parasite Sparks New Treatment

The parasite is, however, dangerous for people with immune failure due to conditions like AIDS, and for fetuses whose immune system has not yet developed. This is why pregnant women are advised not to eat raw meat which might contain the parasite, and to stay away from cats, which might deliver it through their feces. While ridding the body of the parasite, a healthy immune system has only limited access to the brain, and the parasite remains in the brain throughout the carrier’s lifetime”.

The parasite’s ability to penetrate the human brain and survive there in a dormant state, without reproducing, made it a perfect candidate for the researchers’ novel approach: genetically engineering Toxoplasma gondii to secrete therapeutic proteins.

Can Parasites Deliver Medications to the Brain?

“The parasite has three distinct secretion systems and we ‘hitched a ride’ on two of them”, says Prof. Rechavi. “We did not intervene with the first system, which secretes proteins outside the neurons. The second system ‘shoots’ a ‘harpoon’ into the neuron, to enable penetration. Once inside, the parasite forms a kind of cyst that continues to secrete proteins permanently. We engineered the parasite’s DNA to make it produce and secrete the proteins we want, which have therapeutic potential”.

“The parasite’s ability to pass through the BBB and communicate with the neurons, combined with our ability to engineer the parasite, generate a golden opportunity for solving the great therapeutic challenge of delivering medications to the brain”, says Prof. Sheiner.

Illustration of the activity of neurons

In this study, the team used transgenic model animals that were injected with parasites genetically engineered to produce and secrete proteins that travel into cell nuclei. Several lines of evidence proved that the proteins had been delivered to the target area and remained active in the neurons’ nuclei. One of these was especially eye-catching: a protein that, delivered by the parasite, entered the nuclei and cut out specific DNA segments, causing the transgenic animals’ brains to glow in the dark.

New Method for Rett Syndrome

This breakthrough can have far-reaching implications for a series of severe diseases. In the present study, the researchers specifically demonstrated the delivery of a protein called MeCP2, whose deficiency is associated with Rett syndrome. “This is a deadly syndrome caused by a deficiency in a single gene called MePC2 in brain cells, and our engineered Toxoplasma gondii was able to deliver it to the target cells”, says Prof. Rechavi. “But this is just one example. There are many other diseases caused by deficiency or abnormal expression of a certain protein”. To ensure the method’s safe and effective therapeutic implementation, for both drug delivery and genetic editing, a company named Epeius was established in collaboration with Ramot – the technology transfer company of Tel Aviv University, and with the University of Glasgow’s research and innovation services.

Can Bats Think Ahead of Time?

TAU researchers discover that bats have episodic memory and plan ahead

Researchers at Tel Aviv University tracked free-ranging Egyptian fruit bats from a colony based in the TAU’s I. Meier Segals Garden for Zoological Research to answer a long-standing scientific question: Do animals have high and complex cognitive abilities, previously attributed only to humans? In particular, the study focused on the traits of episodic memory, mental time travel, planning ahead, and delayed gratification, arriving at highly thought-provoking conclusions.

The study was led by Prof. Yossi Yovel and Dr. Lee Harten from the School of Zoology and Sagol School of Neuroscience at Tel Aviv University. Other researchers included: Xing Chen, Adi Rachum, Michal Handel, and Aya Goldstein from the School of Zoology, Lior de Marcas from the Sagol School of Neuroscience, and Maya Fenigstein Levi and Shira Rosencwaig from the National Public Health Laboratory of Israel’s Ministry of Health. The paper was published in Current Biology.

Prof. Yossi Yovel.

Prof. Yovel: “For many years the cognitive abilities to recall personal experiences (episodic memory) and plan ahead were considered exclusive to humans. But more and more studies have suggested that various animals also possess such capabilities. Still, nearly all of these studies were conducted under laboratory conditions, since field studies on these issues are difficult to perform. Attempting to test these abilities in wild animals, we designed a unique experiment relying on the colony of free-ranging fruit bats based in TAU’s I. Meier Segals Garden for Zoological Research”.

How Bats Keep Track of Food Resources

The researchers assumed that bats depending on fruit trees for their survival would need to develop an ability to track the availability of food both spatially (where are the fruit trees?) and over time (when does each tree give fruit?).  Navigating through landscapes with numerous fruit and nectar trees, they would need to mentally track the resources in order to revisit them at the appropriate time. To test this hypothesis, a tiny high-resolution GPS tracker was attached to each bat, enabling the documentation of flight routes and trees visited for many months. The vast data collected in this way were thoroughly analyzed, producing some amazing results.  

The first research question was: Do bats form a time map in their minds? To explore this issue, the researchers prevented the bats from leaving the colony for varying periods of time, from one day to a week. Dr. Harten: “We wanted to see whether the bats could tell that time had elapsed and behave accordingly. We found that after one day of captivity, the bats would return to trees visited on the previous night. However, when a whole week had gone by, the older bats, based on past experience, avoided trees that had stopped bearing fruit in the interval. In other words: they were able to estimate how much time had passed since their last visit to each tree and knew which trees bore fruit for a short time and were no longer worth visiting. Young, inexperienced  bats were unable to do this, indicating that this is an acquired skill that must be learned”.

While the first research question looked at past experiences, the second dealt with the future: Do the bats exhibit future-oriented behaviors? Are they capable of planning ahead?  To address this issue the researchers observed each bat’s route to the first tree of the evening, possibly indicative of plans made before leaving the colony. Chen Xing: “We found that usually the bats fly directly to a specific tree they know, sometimes 20 or 30 minutes away. Being hungry, they fly faster when that tree is further away, suggesting they plan where they are heading.

Moreover, focused on their chosen target, they will pass by other trees, even good sources visited just yesterday – indicating a capacity for delayed gratification. We also found that the first bats to leave the colony choose trees bearing fruits rich in sugar, while the bats that leave later seek proteins.” All these findings suggest that the bats plan their foraging before they leave the colony, and know exactly where they are flying and what kind of nourishment they are looking for.

Rethinking Intelligence in Animals

Prof. Yovel: “The cognitive gap between humans and animals is one of the most fascinating issues in science. Our study demonstrates that fruit bats are capable of quite a complex decision-making process involving the three questions indicative of cognitive abilities: Where? (each tree’s location); When? (when the tree bears fruit); and What? (the nourishment it provides – sugar vs. proteins). Once again we find that the gap is not cleat-cut, and that humans are not as unique as some might think. Apparently, humans and animals are all located on a spectrum, with almost any human ability found in animals as well”.

Tel Aviv University Shatters Limits with Self-Repairing Glass

TAU researchers create transparent, self-repairing adhesive glass that forms in contact with water.

Researchers from TAU have created a new type of glass with unique and even contradictory properties, such as being a strong adhesive (sticky) and incredibly transparent at the same time. The glass, which forms spontaneously when in contact with water at room temperature, could revolutionize in an array of diverse industries such as optics and electro-optics, satellite communication, remote sensing and biomedicine. The glass has been discovered by a team of researchers from Israel and the world, led by PhD student Gal Finkelstein-Zuta and Prof. Ehud Gazit from the Shmunis School of Biomedicine and Cancer Research at the Faculty of Life Sciences and the Department of Materials Science and Engineering at the Faculty of Engineering at TAU. The research results were published last week in the prestigious scientific journal Nature.

“In our laboratory, we study bio-convergence and specifically use the wonderful properties of biology to produce innovative materials”, explains Prof. Gazit. “Among other things, we study sequences of amino acids, which are the building blocks of proteins. Amino acids and peptides have a natural tendency to connect and form ordered structures with a defined periodic arrangement, but during the research, we discovered a unique peptide that behaves differently from anything we know: it didn’t form any ordered pattern but an amorphous, disordered one, that describes glass”.

(Left to right) Gal Finkelstein-Zuta and Prof. Ehud Gazit.

Just Add Water

At the molecular level, glass is a liquid-like substance that lacks order in its molecular structure. Still, its mechanical properties are solid-like. Glass is usually manufactured by rapidly cooling molten materials and “freezing” them in this state before they are allowed to crystallize, resulting in an amorphous state that allows unique optical, chemical and mechanical properties – alongside durability, versatility, and sustainability. The researchers from TAU discovered that the aromatic peptide, which consists of a three-tyrosine sequence (YYY), forms a molecular glass spontaneously, upon evaporation of an aqueous solution, under room-temperature conditions.

“The commercial glass we all know is created by the rapid cooling of molten materials, a process called vitrification”, says Gal Finkelstein-Zuta. “The amorphous liquid-like organization should be fixed before it arranges in a more energy-efficient way as in crystals, and for that energy is required – it should be heated to high temperatures and cooled down immediately. On the other hand, the glass we discovered made of biological building blocks, forms spontaneously at room temperature, without the need for energy such as high heat or pressure. Just dissolve a powder in water – just like making Kool-Aid, and the glass will form. For example, we made lenses from our new glass. Instead of undergoing a lengthy process of grinding and polishing, we simply dripped a drop onto a surface, where we control its curvature – and hence its focus – by adjusting the solution volume alone”.

Solid peptide glass after preparation.

The properties of the innovative glass from TAU are unique in the world – and even contradict each other: it is very hard, but it can repair itself at room temperature; It is a strong adhesive, and at the same time, it is transparent in a wide spectral range, ranging from the visible light to the mid-infrared range.

An Unbreakable Marvel

“This is the first time anyone has succeeded in creating molecular glass under simple conditions”, says Prof. Gazit, “but not less important than that are the properties of the glass we created. It is a very special glass. On the one hand, it is very strong and on the other hand, very transparent – much more transparent than ordinary glass. The normal silicate glass we all know is transparent in the visible light range, the molecular glass we created is transparent deep into the infrared range. This has many uses in fields such as satellites, remote sensing, communications and optics. It is also a strong adhesive, it can glue different glasses together, and at the same time, can repair cracks that are formed in it. It is a set of properties that do not exist in any glass in the world, which has great potential in science and engineering, and we got all this from a single peptide – one little piece of protein”.

Global Coral Crisis: Deadly Sea Urchin Disease Discovered

TAU Researchers Found the Cause of Sea Urchin Deaths in the Red Sea, Potentially Threatening Coral Reefs Worldwide.

 

Wake-Up Call: Global Warming and Deforestation Threaten Wildlife

A New TAU Study Shows that Global Warming and Deforestation Could Cause Mass Animal Extinctions.

A joint study by TAU and the University of Colorado (CU) states that the combination of global warming and extreme heat events, alongside the continued expansion of deforestation in the world, may be devastating for many species of animals, especially those that know how to climb trees. As part of the study, the researchers focused on lizards and showed that following the effects of climate change, they will seek refuge from the hot ground by spending a lot of time on trees. However, due to human-related activities, such as deforestation, urbanization and the expansion of agricultural lands at the expense of natural lands, the availability of trees in the areas where the lizards live will decrease, and this may lead to the collapse of many populations.

The research was conducted under the leadership of doctoral student Omer Zlotnick from the laboratory of Dr. Ofir Levy at the School of Zoology, the Wise Faculty of Life Sciences and the Steinhardt Museum of Natural History at TAU and in collaboration with Dr. Keith Musselman from CU. The study was published in the journal Nature Climate Change. 

Climate Crisis: Animals Seeking Comfort in Trees

The researchers explain that the climate crisis and global warming force animals to search for more comfortable places to stay to escape the extreme heat, just as we look for a shady area on a hot day. For climbing animals, trees can serve as a comfortable and pleasant refuge. One of the reasons for this is that the farther you get from the ground, the lower the air temperature gets, and the stronger the wind becomes. Therefore, on hot days, for example, animals can climb up trees to escape from the hot ground.

The importance of trees, then, is expected to increase as the climate warms. The problem is that in many places in the world, the density of trees is decreasing, mainly due to phenomena such as deforestation and the expansion of the use of trees for various purposes such as construction, etc. This phenomenon creates a situation where, on the one hand, due to climate change, animals will depend more on trees for their survival, while on the other hand, the destruction of habitats will lead to a decrease in the availability of trees.

Lizards’ Habitat Loss

Doctoral student Omer Zlotnik: “As part of the research, we wanted to examine how the combined effect of these two processes would be on animals. Specifically, we focused on lizards because they are very dependent on their environment to maintain a normal body temperature, and a lack of comfortable places to stay can affect them dramatically. In the study, we used a computer simulation to simulate where the lizard should be, in the sun, in the shade, or on the tree, every minute for 20 years, under the climate conditions that existed in the past and under those expected in the future. Using the simulation, we examined how populations of lizards would be affected by climate change when trees are available and how their situation would change following the felling of trees in their habitat”.

Left to right – Dr. Ofir Levy & Omer Zlotnick

The results showed that, in general terms, climate change is going to benefit many lizard populations. In most places, the expected warming will allow lizards to be active longer throughout the day and the year, as there will be fewer times when it is too cold to come out of their burrows. However, when climate change occurs at the same time as the felling of trees, the trend is likely to reverse, so that many lizard populations may collapse. In areas with a warm climate, climate change, even if no trees are cut down, is expected to harm lizard populations, and cutting down trees will make the situation even worse.

“What’s really interesting about lizards is that they just need to be able to move a short distance around the tree trunk to get to a very different climate and habitat environment”, said Keith Musselman, an assistant professor in the Department of Geography and CU Boulder’s Institute of Arctic and Alpine Research. 

Musselman: “These microhabitats are particularly important when we think about how we modify our natural environment and make conservation decisions”.

Dr. Ofir Levy concludes: “Our research focused on lizards, but it actually demonstrates a broader problem that is relevant to many species of animals. Our results demonstrate that trees are crucially important to the ability of animals to cope with climate change, and in many cases, their availability can be, for the animals, the difference between crawling and collapsing. Our research proves how important it is to preserve forested areas and trees in general, especially in light of the changing climate. As part of the research, we also provide more practical tools for decision-makers, such as the height or density of trees required in different areas. We hope that this research will be used to build more effective programs for the conservation and restoration of natural areas so that we can provide the animals with what they need to survive”.

Victoria

Tok Corporate Centre, Level 1,
459 Toorak Road, Toorak VIC 3142
Phone: +61 3 9296 2065
Email: [email protected]

New South Wales

Level 22, Westfield Tower 2, 101 Grafton Street, Bondi Junction NSW 2022
Phone: +61 418 465 556
Email: [email protected]

Western Australia

P O Box 36, Claremont,
WA  6010
Phone: :+61 411 223 550
Email: [email protected]