Skip to main content

Tag: Life Sciences

Did climate change cause infections 6,000 years ago?

New study of human skulls finds infections peaked due to high population density, poor hygiene and climate conditions

Researchers at Tel Aviv University have discovered evidence of ear infections in the skull remains of humans living in the Levant some 15,000 years ago. “Our research seeks to determine the impact of our environment on illnesses in different periods,” says lead author Dr. Hila May of the Department of Anatomy and Anthropology at TAU’s Sackler Faculty of Medicine and the Dan David Center for Human Evolution and Biohistory Research at the Faculty of Medicine, located at the Steinhardt Museum of Natural History. “Using advanced technologies and unique methods developed in our lab, we have been able to detect signs of prolonged inflammation in the middle ear.” The researchers found a decline in morbidity as a result of ear infections following the transition from hunting and gathering to farming on account of changes in living conditions. A peak in morbidity, however, was observed in a sedentary population living about 6,000 years ago (Chalcolithic period). Dr. May says the reason for this is twofold: social and environmental: “We know from archaeological excavations of this period, similar to preceding periods, people lived in a communal area where all activities, from cooking to raising livestock, took place. As a result, the population density in the ‘home’ was high, hygiene was poor and they suffered from indoor air pollution. Two other factors known about this period – dietary change, the advent of dairy consumption, and climate change, a dip in temperature and a rise in rainfall, also contributed to the prevalence  of ear infections.”

A story in the skulls

Until the advent of antibiotics in the 20th century, ear infections developed into chronic conditions, or, due to complications, caused permanent loss of hearing or even death. “Ear infections are still a very common childhood ailment, with over 50 percent of young children today still suffering from an ear infection at one point or another,” explains Dr. May. “The reason for this is that the tubes that channel fluid from the middle ear to the mouth are underdeveloped in young children, so fluids that accumulate in the ear ultimately cause inflammation.” “A prolonged ear infection would cause permanent damage to the bony wall of the middle ear, which is remarkably preserved into adulthood, so when we sought to investigate changes in communal health over time in our region, we chose to focus on ear infections, developing a special method for doing so,” she adds. The scientists used a videoscope, a tiny camera mounted at the end of a flexible tube, which they inserted through the ear canal to the middle ear to observe its bony walls. In addition, they scanned skull remains with a high-resolution micro-CT, and also examined the middle ear’s bony wall using a light microscope.

More room, fewer infections

As living conditions improved, morbidity as a result of ear infections dropped, according to the study. “Houses were larger and featured several rooms, including separate areas for specific activities, i.e. the kitchen was set up in a separate room or outside, and livestock were kept in a separate area,” she says. “The change in lifestyle and climate is reflected in a decline in morbidity.” “Our study deals with the impact of the environment and social behavior on morbidity rates, and to do so, we examined a common disease that has accompanied humanity since inception – the ear infection,” concludes Dr. May. “Understanding how diseases appear, spread and disappear throughout human history can help prevent and find solutions to contemporary illnesses. The study clearly points out risk factors and shows how lifestyle changes can affect the incidence of the disease. In both ear infections and COVID-19, social distancing and adherence to hygiene reduced the spread of infection, while close quarters and unhygienic living conditions saw infections spike.”

TAU researchers discover unique, non-oxygen breathing animal

The tiny relative of the jellyfish is parasitic and dwells in salmon tissue.

Researchers at Tel Aviv University have discovered a non-oxygen breathing animal. The unexpected finding changes one of science’s core assumptions about the animal world.A study on the finding was published on February 25 in PNAS by TAU researchers led by Prof. Dorothee Huchon of the School of Zoology at TAU’s George S. Wise Faculty of Life Sciences and Steinhardt Museum of Natural History.The tiny, less than 10-celled parasite Henneguya salminicola lives in salmon muscle. As it evolved, the animal, which is a myxozoan relative of jellyfish and corals, gave up breathing and consuming oxygen to produce energy.

Living without oxygen

“Aerobic respiration was thought to be ubiquitous in animals, but now we confirmed that this is not the case,” Prof. Huchon explains. “Our discovery shows that evolution can go in strange directions. Aerobic respiration is a major source of energy, and yet we found an animal that gave up this critical pathway.”Some other organisms like fungi, amoebas or ciliate lineages in anaerobic environments have lost the ability to breathe over time. The new study demonstrates that the same can happen to an animal — possibly because the parasite happens to live in an anaerobic environment.Its genome was sequenced, along with those of other myxozoan fish parasites, as part of research supported by the U.S.-Israel Binational Science Foundation and conducted with Prof. Paulyn Cartwright of the University of Kansas, and Prof. Jerri Bartholomew and Dr. Stephen Atkinson of Oregon State University.

Reversing what we know about evolution

The parasite’s anaerobic nature was an accidental discovery. While assembling the Henneguya genome, Prof. Huchon found that it did not include a mitochondrial genome. The mitochondria is the powerhouse of the cell where oxygen is captured to make energy, so its absence indicated that the animal was not breathing oxygen.Until the new discovery, there was debate regarding the possibility that organisms belonging to the animal kingdom could survive in anaerobic environments. The assumption that all animals are breathing oxygen was based, among other things, on the fact that animals are multicellular, highly developed organisms, which first appeared on Earth when oxygen levels rose. “It’s not yet clear to us how the parasite generates energy,” Prof. Huchon says. “It may be drawing it from the surrounding fish cells, or it may have a different type of respiration such as oxygen-free breathing, which typically characterizes anaerobic non-animal organisms.” According to Prof. Huchon, the discovery bears enormous significance for evolutionary research.“It is generally thought that during evolution, organisms become more and more complex, and that simple single-celled or few-celled organisms are the ancestors of complex organisms,” she concludes. “But here, right before us, is an animal whose evolutionary process is the opposite. Living in an oxygen-free environment, it has shed unnecessary genes responsible for aerobic respiration and become an even simpler organism.”

TAU study among top 12 most important in the world

Prof. Yoel Rak’s anthropology study was selected by Science Magazine as one of the scientific breakthroughs of the 2019

Each year, Science Magazine, arguably the world’s most prestigious scientific publication, selects 12 groundbreaking studies from around the world, inviting the public to vote for whichever study they consider the most important. This year, the list includes an Israeli study, done in collaboration with Prof. Yoel Rak, a physical anthropologist from the Sackler Faculty of Medicine, led by researchers from the Hebrew University of Jerusalem, in which scientists were able to reconstruct a human profile of a mysterious group known as the Danisovans, using DNA remnants only.

Who are the Denisovans?

The Denisovans are a group of humans who lived in the east and northeast of Asia until a few tens of thousands of year ago, and differed in their characteristics from the Homo sapiens and Neanderthals who were alive at the time. While the Homo sapiens lived mainly in Africa at that time, the Neanderthals settled in Europe and North Asia, where they met with the Danisovans and mixed with them. Until recently, all of our knowledge about this group was based on a few small pieces of bone, and it is believed that the group’s existence would not have been uncovered except for the development of new methods for the extraction, sequencing and analysis of ancient DNA.

The study by Prof. Rak and his colleagues presented an exciting breakthrough: the restoration of a Denisovan’s face using an epigenetic reconstruction method of ancient DNA, taken from the tip of a young woman’s finger, which was found in Siberia in 2008. This is a study of genetic changes that do not occur in the sequence of DNA letters itself, but affect how genes are expressed in each and every cell.

The study will make it possible to understand the various adaptations made by the Danisovans group to its surroundings, and shed light on features that distinguish us, modern humans, from the other human groups that did not survive to modern times.

Alongside Prof. Rak’s study, the competition at Science also included the first photograph of a black hole, a photo of the space rock Ultima Thula, the skeleton of “Lucy’s” ancestor from 3.8 million years ago, long-term treatment for the HIV virus and other studies from the world of medicine.

Victoria

Tok Corporate Centre, Level 1,
459 Toorak Road, Toorak VIC 3142
Phone: +61 3 9296 2065
Email: [email protected]

New South Wales

Level 22, Westfield Tower 2, 101 Grafton Street, Bondi Junction NSW 2022
Phone: +61 418 465 556
Email: [email protected]

Western Australia

P O Box 36, Claremont,
WA  6010
Phone: :+61 411 223 550
Email: [email protected]