Skip to main content

Tag: Medicine

Is There a Way to Stop Parkinson’s Disease at Its Source?

TAU Researchers discovered a potential new target for developing effective treatments for Parkinson’s disease.

Researchers at Tel Aviv University discovered a new factor in the pathology of Parkinson’s disease, which in the future may serve as a target for developing new treatments for this terrible ailment, affecting close to 10 million people worldwide.

The researchers: “We found that a variant of the TMEM16F protein, caused by a genetic mutation, enhances the spread of Parkinson’s pathology through nerve cells in the brain”.

The study was led by Dr. Avraham Ashkenazi and PhD student Stav Cohen Adiv Mordechai from the Department of Cell and Developmental Biology at TAU’s Faculty of Medical and Health Sciences and the Sagol School of Neuroscience. Other contributors included: Dr. Orly Goldstein, Prof. Avi Orr-Urtreger, Prof. Tanya Gurevich and Prof. Nir Giladi from TAU’s Faculty of Medical and Health Sciences and the Tel Aviv Sourasky Medical Center, as well as other researchers from TAU and the University of Haifa. The study was backed by the Aufzien Family Center for the Prevention and Treatment of Parkinson’s Disease at TAU. The paper was published in the scientific journal Aging Cell.

Doctoral student Stav Cohen Adiv Mordechai explains: “A key mechanism of Parkinson’s disease is the aggregation in brain cells of the protein α-synuclein (in the form of Lewy bodies), eventually killing these cells. For many years, researchers have tried to discover how the pathological version of α-synuclein spreads through the brain, affecting one cell after another, and gradually destroying whole brain sections. Since α-synuclein needs to cross the cell membrane to spread, we focused on the protein TMEM16F, a regulator situated in the cell membrane, as a possible driver of this lethal process”.

α-synuclein spread in the mouse brain.

At first, the researchers genetically engineered a mouse model without the TMEM16F gene, and derived neurons from the brains of these mice for an in-vitro cellular model. Using a specially engineered virus, they caused these neurons to express the defective α-synuclein associated with Parkinson’s and compared the results with outcomes from normal brain cells containing TMEM16F. They found that when the TMEM16F gene had been deleted, the α-synuclein pathology spread to fewer healthy neighboring cells compared to the spread from normal cells. The results were validated in-vivo in a living mouse model of Parkinson’s disease.

TMEM16F Mutation Linked to Parkinson’s Risk in Ashkenazi Jews

In addition, in collaboration with the Neurological Institute at the Tel Aviv Sourasky Medical Center, the researchers looked for mutations (variants) in the TMEM16F gene that might increase the risk for Parkinson’s disease. Dr. Ashkenazi explains: “The incidence of Parkinson’s among Ashkenazi Jews is known to be relatively high, and the Institute conducts a vast ongoing genetic study on Ashkenazi Jews who carry genes increasing the risk for the disease. With their help, we were able to identify a specific TMEM16F mutation which is common in Ashkenazi Jews in general, and in Ashkenazi Parkinson’s patients in particular”. Cells carrying the mutation were found to secrete more pathological α-synuclein compared to cells with the normal gene. The researchers explain that the mechanism behind increased secretion has to do with the biological function of the TMEM16F protein: the mutation increases the activity of TMEM16F, thereby affecting membrane secretion processes.

Stav Cohen Adiv Mordechai: “In our study, we discovered a new factor underlying Parkinson’s disease: the protein TMEM16F, which mediates secretion of the pathological α-synuclein protein through the cell membrane to the cell environment. Picked up by healthy neurons nearby, the defective α-synuclein forms Lewy bodies inside them, and gradually spreads through the brain, damaging more and more brain cells. Our findings mark TMEM16F as a possible new target for the development of effective treatments for Parkinson’s disease. If, by inhibiting TMEM16F, we can stop or reduce the secretion of defective α-synuclein from brain cells, we may be able to slow down or even halt the spread of the disease through the brain”.

Dr. Ashkenazi emphasizes that research on the new Parkinson’s mechanism has only begun, and quite a number of questions still remain to be explored: Does inhibiting TMEM16F actually reduce the symptoms of Parkinson’s disease? Does the lipid composition of cell membranes play a part in spreading the disease in the brain? Is there a link between mutations in TMEM16F and the prevalence of Parkinson’s in the population? The research team intends to continue the investigation in these directions and more.

How Does the Brain Keep Calm?

New Insight into Brain Stability: The Key Role of NMDA Receptors

Researchers at Tel Aviv University have made a fundamental discovery: the NMDA receptor (NMDAR)—long studied primarily for its role in learning and memory—also plays a crucial role in stabilizing brain activity. By setting the “baseline” level for activity in neural networks, the NMDAR helps maintain stable brain function amidst continuous environmental and physiological changes. This discovery may lead to innovative treatments for diseases linked to disrupted neural stability, such as depression, Alzheimer’s disease, and epilepsy.

The study was led by Dr. Antonella Ruggiero, Leore Heim, and Dr. Lee Susman from Prof. Inna Slutsky’s lab at the Faculty of Medical and Health Sciences at Tel Aviv University. Prof. Slutsky, who is also affiliated with the Sagol School of Neuroscience, heads the Israeli Society for Neuroscience and directs the Sieratzki Institute for Advances in Neuroscience. Additional researchers included Dr. Ilana Shapira, Dima Hreaky, and Maxim Katsenelson from the Faculty of Medical and Health Sciences at Tel Aviv University, and Prof. Kobi Rosenblum from the University of Haifa. The study was published in the prestigious journal Neuron.

“In recent decades, brain research has mainly focused on processes that allow information encoding, memory, and learning, based on changes in synaptic connections between nerve cells”, says Prof. Slutsky.

“But the brain’s fundamental stability, or homeostasis, is essential to support these processes. In our lab, we explore the mechanisms that maintain this stability, and in this study, we focused on the NMDAR—a receptor known to play a role in learning and memory”, Slutsky continues.

This comprehensive project used three primary research methods: electrophysiological recordings from neurons in both cultured cells (in vitro) and living, behaving mice (in vivo) within the hippocampus, combined with computational modeling (in silico). Each approach provided unique insights into how NMDARs contribute to stability in neural networks.

Dr. Antonella Ruggiero studied NMDAR function in cultured neurons using an innovative technique called “dual perturbation”, developed in Prof. Slutsky’s lab. “First, I exposed neurons to ketamine, a known NMDAR blocker”, she explains. “Typically, neuronal networks recover on their own after disruptions, with activity levels gradually returning to baseline due to active compensatory mechanisms. But when the NMDAR was blocked, activity levels stayed low and didn’t recover. Then, with the NMDAR still blocked, I introduced a second perturbation by blocking another receptor. This time, the activity dropped and recovered as expected, but to a new, lower baseline set by ketamine, not the original level”. This finding reveals the NMDAR as a critical factor in setting and maintaining the activity baseline in neuronal networks. It suggests that NMDAR blockers may impact behavior not only through synaptic plasticity but also by altering homeostatic set points.

Building on this discovery, Dr. Ruggiero sought to uncover the molecular mechanisms behind the NMDAR’s role in tuning the set point. She identified that NMDAR activity enables calcium ions to activate a signaling pathway called eEF2K-BDNF, previously linked to ketamine’s antidepressant effects.

How NMDARs Set the Brain’s Activity Baseline

Leore Heim investigated whether the NMDAR similarly affects baseline activity in the hippocampus of living animals. A major technical challenge was administering an NMDAR blocker directly to the hippocampus without affecting other brain areas, while recording long-term activity at the individual neuron level. “Previous studies often used injections that delivered NMDAR blockers across the entire brain, leading to variable and sometimes contradictory findings,” he explains. “To address this, I developed a method combining direct drug infusion into the hippocampus with long-term neural activity recording in the same region. This technique revealed a consistent decrease in hippocampal activity across states like wakefulness and sleep, with no compensatory recovery as seen with other drugs. This strongly supports that NMDARs set the activity baseline in hippocampal networks in living animals”.

Mathematician Dr. Lee Susman created computational models to answer a longstanding question: Is brain stability maintained at the level of the entire neural network, or does each neuron individually stabilize itself? “Based on the data from Antonella and Leore’s experiments, I found that stability is maintained at the network level, not within single neurons,” he explains. “Using models of neural networks, I showed that averaging activity across many neurons provides computational benefits, including noise reduction and enhanced signal propagation. However, we need to better understand the functional significance of single-neuron drift in future studies”.

Prof. Slutsky adds: “We know that ketamine blocks NMDARs, and in 2008, it was FDA-approved as a rapid-acting treatment for depression. Unlike typical antidepressants like Cipralex and Prozac, ketamine acts immediately by blocking NMDARs. However, until now, it wasn’t fully understood how the drug produced its antidepressant effects. Our findings suggest that ketamine’s actions may stem from this newly discovered role of NMDAR: reducing the activity baseline in overactive brain regions seen in depression, like the lateral habenula, without interfering with homeostatic processes. This discovery could reshape our understanding of depression and pave the way for developing innovative treatments”.

Hyperbaric Oxygen Therapy: A Promising Treatment for PTSD Symptoms

Biological damage in PTSD sufferers can be treated with a specialized protocol.

Researchers at Tel Aviv University and the Sagol Center for Hyperbaric Medicine and Research at the Shamir Medical Center have demonstrated that hyperbaric oxygen therapy (HBOT) improves the condition of PTSD sufferers who have not responded to psychotherapy or psychiatric medications. The researchers: “Our unique therapeutic protocol affects the biological brain ‘wound’ associated with PTSD, and effectively reduces typical symptoms such as flashbacks, hypervigilance, and irritability. We believe that our findings give new hope to millions of PTSD sufferers and their families, all over the world”.

The study was led by Prof. Shai Efrati and Dr. Keren Doenyas-Barak from the Faculty of Medical and Health Sciences at Tel Aviv University and the Sagol Center for Hyperbaric Medicine and Research at the Shamir Medical Center. Other contributors include Dr. Ilan Kutz, Gabriela Levi, Dr. Erez Lang, Dr. Amir Asulin, Dr. Amir Hadanny, and Dr. Ilia Beberashvili from the Shamir Medical Center, and Dr. Kristoffer Aberg and Dr. Avi Mayo from the Weizmann Institute. The paper was published in The Journal of Clinical Psychiatry.

“At present, we treat hundreds of PTSD sufferers every day”

Prof. Efrati: “Due to our unfortunate circumstances, Israel has become a global leader in the field of PTSD. Before the Hamas attack on Oct. 7, 2023, approximately 6,000 IDF veterans had been recognized as PTSD sufferers, with many others, both soldiers and citizens, not yet acknowledged by the authorities. Following Oct. 7 and the ensuing war, these numbers have risen sharply. Tens of thousands of soldiers, and much larger numbers of civilians, are likely to be diagnosed with PTSD. The world-leading Sagol Center for Hyperbaric Medicine, the largest of its kind in the world, is rising to the challenge – with a comprehensive therapeutic array comprising hyperbaric facilities combined with diverse mental health professionals, psychologists and psychiatrists. At present, we treat hundreds of PTSD sufferers every day, aiming to reach one thousand patients per year”.

Dr. Doenyas-Barak: “PTSD (Post-Traumatic Stress Disorder) is defined as the mental outcome of exposure to a life-threatening event. About 20% of those who have undergone such an experience will develop PTSD, which can lead to substantial social, behavioral, and occupational dysfunctions. In extreme cases, the disorder can severely impact their quality of life, family life, and professional performance. Symptoms include a range of emotional and cognitive changes, nightmares and flashbacks, hypervigilance, irritability, and avoidance – so as not to trigger traumatic experiences. In many cases, PTSD is resistant to psychotherapy and common psychiatric medications. Past studies on therapy-resistant sufferers have found changes in the structure and function of brain tissues, or a ‘biological wound’ that explains such treatment resistance. In our study, we wanted to determine whether hyperbaric therapy can help these patients”.

Testing HBOT for PTSD Relief

The study, which began in 2019 and ended in the summer of 2023, included 98 male IDF veterans diagnosed with combat-associated PTSD, who had not responded to either psychotherapy or psychiatric medications. Participants were divided into two groups: one group received HBOT treatment, breathing pure high-pressure oxygen, while the other underwent the same procedure, but received a placebo treatment, breathing regular air. 28 members of each group completed the process and the following evaluation.

Dr. Doenyas-Barak: “The HBOT was administered in accordance with a unique treatment protocol developed at our Center. Every patient is given a series of 60 two-hour treatments in our hyperbaric chamber, during which they are exposed to pure 100% oxygen at a pressure of 2 atmospheres (twice the normal air pressure at sea level). Our protocol specifies alternately breathing oxygen and regular air: every 20 minutes the patient removes the oxygen mask and breathes regular air for five minutes. The drop in oxygen level, at the tissue level, activates healing processes and thus enhances the therapeutic effect”.

Functional MRI before and after HBOT  Photo credit: The Shamir Medical Center.

Functional MRI before and after HBOT. Photo credit: The Shamir Medical Center.

The results were encouraging, with improvements observed both at the clinical level and in fMRI imaging.  The group that received hyperbaric therapy showed improved connectivity in brain networks, alongside a decline in all typical PTSD symptoms. In the placebo group, on the other hand, no change was observed in either the brain or clinical symptoms. Prof. Efrati: “Our study demonstrated that HBOT induces biological healing in the brain of PTSD sufferers. Curing the biological wound also impacts clinical symptoms. We believe that HBOT, based on the special protocol we have developed, can bring relief to numerous PTSD sufferers worldwide, allowing them to resume a normative life in their community and family”.

Prof. Efrati emphasizes:

“Patients suffering from PTSD should undergo HBOT only at professional hyperbaric centers, where treatment is delivered by multidisciplinary teams experienced in trauma care. Unsupervised, private hyperbaric chambers are unable to provide a proven, effective protocol. Additionally, patients must receive a thorough professional evaluation to ensure they are suitable for HBOT and to determine what additional support is needed throughout their treatment journey”.

Israel’s Ministry of Defense funds HBOT for veterans who need it.

TAU Breakthrough Reveals Mechanism That Eliminates Tumors

Researchers identified a mechanism that eliminates tumors—even those resistant to immunotherapy.

A technological breakthrough by medical researchers at Tel Aviv University enabled the discovery of a cancer mechanism that prevents the immune system from attacking tumors. The researchers were surprised to find that reversing this mechanism stimulates the immune system to fight the cancer cells, even in types of cancer considered resistant to prevailing forms of immunotherapy. The breakthrough was led by Prof. Carmit Levy, Prof. Yaron Carmi, and PhD student Avishai Maliah from TAU’s Faculty of Medical and Health Sciences. The paper was published in the leading journal Nature Communications.

Prof. Levy: “It all happened by coincidence. My lab studies both cancer and the effects of ultraviolet (UV) radiation from the sun on our skin and body – both of which are known to suppress the immune system. Cancer suppresses approaching immune cells and solar radiation suppresses the skin’s immune system. While in most cases, we cancer researchers worldwide focus on the tumor and look for mechanisms by which cancer inhibits the immune system, here we proposed a different approach: investigating how UV exposure suppresses the immune system and applying our findings to cancer. The discovery of a mechanism that inhibits the immune system opens new paths for innovative therapies”.

What Surprising Findings Emerged from the Research?

Prof. Levy adds: “With this idea in mind, I asked my colleague Prof. Yaron Carmi, a global expert on the immune system, to join the study. Avishai Maliah, an MD/PhD candidate in my lab, led the project. The first stage was a comprehensive investigation of changes in the skin induced by exposure to UV, using a mouse model. Avishai examined the behavior of dozens of proteins post-UV exposure and surprisingly discovered a significant rise in the level of a relatively unexplored protein called Ly6a. This unexpected finding led us to investigate further, to understand the protein function and whether it is involved in the immune suppression process”.

Prof. Carmi explains: “It’s important to understand a basic aspect of the immune system’s function. Our natural immune system is very efficient and very powerful, but it contains quite a few brakes and controls, to prevent overactivity that can cause autoimmune diseases – in which the body attacks itself. When our skin is exposed to UV radiation from the sun, our immune system responds immediately: blood vessels expand, DNA is repaired wherever possible, and cells with mutations are identified and removed. At the same time, a strong control system with numerous brakes is also activated to prevent overactivity”.

How Does UV Exposure Affect Immune Response?

Prof. Levy: “The use of sunlight to suppress autoimmune diseases of the skin – when the skin’s immune system overreacts – has been known for years. Phototherapy is basically the application of UV radiation to treat patients with autoimmune diseases, such as psoriasis, vitiligo and more, because ultimately UV suppresses the skin’s immune system”.

Avishai Maliah: “We found that after exposure to UV radiation, the immune system’s T cells – that play a critical role in fighting cancer – begin to express high levels of the protein Ly6a. We suspected that Ly6a serves as a brake through which UV inhibits the immune system, and that by releasing this brake, optimal activation of the immune system might be resumed”.

Prof. Levy: “We were surprised to discover that this protein, Ly6a, is also overexpressed in cancer tumors – apparently inhibiting T cells. Having found this in two types of cancer, melanoma skin cancer and colon cancer, we have reason to believe that the same thing happens in other cancers as well. Evidently, we have discovered a general mechanism through which cancer tumors desensitize the immune system. Avishai treated cancer with Ly6a antibodies, and amazingly the tumors were significantly reduced. Moreover, cancers resistant to known treatments reacted substantially to Ly6a antibodies”. The new discovery can have practical implications in immunotherapy – treating cancer by enhancing the response of the immune system.

Prof. Carmi: “Immunotherapy has revolutionized the treatment of cancer. However, about 50% of the patients do not respond to the currently prevailing treatment – the protein PD1. We discovered a new protein, Ly6a, and found that its antibody eradicated tumors in our model animals – even those resistant to PD1 therapy. We are currently working to translate our findings into a drug for human cancer patients, hoping to offer an effective new treatment”.

 

Could Cancer Vulnerabilities Be Hidden in Chromosome Changes?

TAU researchers uncover cancer weaknesses, paving the way for targeted treatments.

Two complementary studies from the Faculty of Medical and Health Sciences at Tel Aviv University, in collaboration with the European Institute of Oncology in Milan, have extensively examined the characteristics of cells with an abnormal number of chromosomes – known as aneuploid cells – and raised findings that may advance new cancer treatments.

Targeting Aneuploid Cancer Cells

According to the researchers: “a significant portion of cancer cells are aneuploid, and this trait distinguishes them from healthy cells. Our work focuses on the vulnerabilities of aneuploid cells, with the aim of promoting new strategies for eliminating cancerous tumors”.

The researchers: “In our studies, we found that aneuploidy increases the sensitivity of cancer cells to certain types of anticancer drugs”.

The studies were led by Prof. Uri Ben-David and doctoral student Johanna Zerbib from the Department of Human Molecular Genetics and Biochemistry at the Faculty of Medical and Health Sciences at Tel Aviv University, in collaboration with Professor Stefano Santaguida and doctoral student Marica Rosaria Ippolito from the University of Milan in Italy, along with researchers from both laboratories. Additional contributors included research teams in Israel, Italy, the USA, and Germany. Two articles based on the research were published in the prestigious journals Cancer Discovery and Nature Communications.

Prof. Ben-David explains: “In the nucleus of a healthy human cell, there are 23 pairs of chromosomes – half from the father and half from the mother, totaling 46. One of the characteristics of cancer cells, which distinguishes them from healthy cells, is an abnormal number of chromosomes, resulting from improper cell division – a phenomenon known as aneuploidy. We believe that if we can identify specific vulnerabilities of aneuploid cells, we can promote new cancer treatments that target these weaknesses and do not harm healthy cells. About three years ago, we published a comprehensive study in the journal Nature, in which we classified approximately 2,000 malignant cells from various cancer types according to their level of aneuploidy, and examined how they respond to various existing treatments. In that study, we found new vulnerabilities in aneuploid cells. However, the study had a limitation: because the cells came from different types of cancer, it was difficult to isolate the impact of aneuploidy itself from the effect of other genetic differences between the tumors”.

Consequently, the researchers chose to conduct a new study using human cell cultures that are all genetically identical (i.e., derived from the same individual). The researchers added a substance to the cultures that disrupts the separation of chromosomes, causing some of them to become aneuploid. Since the cells were genetically identical, the only difference between them after the procedure was the level of aneuploidy – i.e., the number of chromosomes. To thoroughly examine the effects of aneuploidy, the cells underwent various characterization processes: DNA and RNA sequencing, measuring the levels of all the proteins in the cell, assessing the response to 6,000 different drugs, as well as a process known as CRISPR screening – systematically impairing each gene in the genome to identify genes that are essential in the cells. The researchers noted: “In this way, an extensive and unique database of the characteristics of aneuploid cells was established, which can serve as a foundation for future studies, as well as for developing biological markers that predict cancer patients’ responses to specific drugs and treatments”.

How to Exploit Cell Vulnerabilities for Cancer Therapy?

As part of the comprehensive survey, a mechanism called MAPK (mitogen-activated protein kinase) was observed, which is especially crucial for repairing DNA damage in aneuploid cells. The study also showed that this mechanism is relevant for various types of aneuploid cells—among them cancer cells in cultures and in human tumors. Prof. Ben-David: “We found that aneuploid cancer cells increase the activity of DNA repair mechanisms due to the large amount of DNA damage present; and we discovered a mechanism that could allow us to exploit this characteristic to target these cancer cells”.

To test their hypothesis, the researchers disrupted the MAPK pathway in the cells and then examined their sensitivity to chemotherapy. The findings were promising: aneuploid cells in which this mechanism was disrupted were much more sensitive to chemotherapy (which causes DNA damage) compared to cells with a normal number of chromosomes. The researchers then sought to determine whether there is a correlation between this pathway and the clinical response of cancer patients to chemotherapy treatments. For this purpose, they relied on data from clinical treatments and experiments where human tumors were implanted in mice, and the results were clear: the higher the activity of the pathway in the aneuploid tumors, the greater their resistance to chemotherapy.

The comprehensive characterization of aneuploid cells also revealed another significant finding: these cells, which contain more chromosomes than normal cells, also necessarily include a larger amount of DNA, leading to excess production of RNA and proteins. The cell, seeking to compensate for this overproduction, attempts to silence and degrade excess RNA and proteins.

Paving the Way for Future Treatments

Johanna Zerbib noted: “Here we found another vulnerability of aneuploid cells, based on our hypothesis that these cells are more sensitive to existing drugs that inhibit protein degradation. To validate this hypothesis, we exposed cell cultures to such drugs and analyzed clinical data from patients treated with a drug that inhibits protein degradation in the cells. The findings supported the hypothesis – that aneuploidy increases the sensitivity of cancer cells to these drugs”.

Prof. Ben-David concluded: “In our research, we identified two significant vulnerabilities characterizing aneuploid cells – cells with chromosomal changes, commonly found in cancer cells. The first is a mechanism essential for repairing DNA damage, where impairment significantly increases the sensitivity of aneuploid cells to chemotherapy; the second is the increased degradation of excess RNA and proteins, which can be targeted, among other things, with inhibitors that are already in clinical use. We also created an extensive database of characteristics of aneuploid cells that can serve to predict cancer patients’ responses to various drugs and treatments. We believe that our research findings will benefit many researchers, oncologists, and patients in the years to come”.

 

Spotting Parkinson’s Early: A New TAU Breakthrough

Researchers at Tel Aviv University cooperated with three major Israeli medical centers to develop a new method for detecting protein aggregation in cells – a hallmark of Parkinson’s disease. The technology can enable diagnosis up to 20 years before the first motor symptoms appear, facilitating treatment or even prevention of the severe disease which is currently incurable. The novel approach is based on super-resolution microscopy combined with computational analysis, allowing for precise mapping of the aggregates’ molecules and structures. The researchers: “Our method can be used to identify early signs and enable preventive treatment in young people at risk for developing Parkinson’s later on in their lives. In the future, the technology may also be adapted for early diagnosis of other neurodegenerative diseases, including Alzheimer’s”.

 

The study was piloted by researchers from the School of Neurobiology, Biochemistry & Biophysics at the Wise Faculty of Life Sciences, the Sagol School of Neuroscience and the Faculty of Medical and Health Sciences at Tel Aviv University, led by Prof. Uri Ashery and PhD candidate Ofir Sade. Other participants included: Prof. Anat Mirelman, Prof. Avner Thaler, Prof. Nir Giladi, Prof. Roy Alcalay, Prof. Sharon Hassin, Prof. Nirit Lev, Dr. Irit Gottfried, Dr. Dana Bar-On, Dr. Meir Kestenbaum, Dr. Saar Anis, Dr. Shimon Shahar, Daphna Fischel, Dr. Noa Barak-Broner, Shir Halevi, and Dr. Aviv Gour – all from Tel Aviv University, with some also affiliated with the Tel Aviv Sourasky (Ichilov), Sheba, or Meir Medical Centers. Researchers from Germany and the USA also contributed to the study. The paper was published in Frontiers in Molecular Neuroscience.

 

 

Spotting Parkinson’s Before Symptoms Appear

Prof. Ashery: “Parkinson’s disease is the second most prevalent neurodegenerative disease in the world after Alzheimer’s – with about 8.5 million people with Parkinson’s living worldwide today, and 1,200 new sufferers diagnosed annually in Israel. The debilitating disease is characterized by the destruction of dopaminergic (dopamine-producing) neurons in the brain’s Substantia Nigra area. Today, diagnosis of Parkinson’s disease is based mainly on clinical symptoms such as tremors or gait dysfunctions, alongside relevant questionnaires. However, these symptoms usually appear at a relatively advanced stage of the disease, when over 50% and up to 80% of the dopaminergic neurons in the Substantia Nigra are already dead. Consequently, available treatments are quite limited in their effect and usually address only motor problems. In this study, we began to develop a research tool to enable diagnosis of Parkinson’s at a much earlier stage, when it is still treatable, and deterioration can be prevented”.

 

Ofir Sade: “One known feature of Parkinson’s is cell death resulting from aggregates of the alpha-synuclein protein. The protein begins to aggregate about 15 years before symptoms appear, and cells begin to die 5-10 years before diagnosis is possible with the means available today. This means that we have an extensive time window of up to 20 years for diagnosis and prevention before symptoms appear. If we can identify the process at an early stage, in people who are 30, 40, or 50 years old, we may be able to prevent further protein aggregation and cell death”. Past studies have shown that alpha-synuclein aggregates form in other parts of the body as well, such as the skin and digestive system. In the current work, the researchers examined skin biopsies from 7 people with and 7 without Parkinson’s disease, received from the Sheba, Ichilov, and Meir Medical Centers. 

 

She continues: “We examined the samples under a unique microscope, applying an innovative technique called super-resolution imaging, combined with advanced computational analysis – enabling us to map the aggregates and distribution of alpha-synuclein molecules.  As expected, we found more protein aggregates in people with Parkinson’s compared to people without the disease. We also identified damage to nerve cells in the skin, in areas with a large concentration of the pathological protein”.

 

 

Parkinson’s Detection Boosted by AI

With proof of concept obtained through the study, the researchers now plan to expand their work, supported by the Michael J. Fox Foundation for Parkinson’s Research. In the next phase, they will increase the number of samples to 90 – 45 from healthy subjects and 45 from people without Parkinson’s disease – to identify differences between the two groups. Ofir Sade: “We intend to pinpoint the exact juncture at which a normal quantity of proteins turns into a pathological aggregate. In addition, we will collaborate with Prof. Lior Wolf of TAU’s School of Computer Science to develop a machine learning algorithm that will identify correlations between the results of motor and cognitive tests and our findings under the microscope. Using this algorithm, we will be able to predict the future development and severity of various pathologies”.

 

Prof. Ashery: “In this study, we identified differences between tissues taken from people with and without Parkinson’s disease, using super-resolution microscopy and computational analysis. In future studies, we will increase the number of samples and develop a machine-learning algorithm to spot relatively young individuals at risk for Parkinson’s. Our main target population is relatives of Parkinson’s patients who carry mutations that increase the risk for the disease. Specifically, we emphasize two mutations known to be widespread among Ashkenazi Jews. A clinical trial is already underway to test a drug expected to hinder the formation of the aggregates that cause Parkinson’s disease. We hope that in the coming years, it will be possible to offer preventive treatments while tracking the effects of medications under the microscope. It is important to note that the method we’ve developed can also be suitable for early diagnosis of other neurodegenerative diseases associated with protein aggregates in neurons, including Alzheimer’s”.

How Can We See Through Closed Eyes?

Tel Aviv University tech tracks pupil changes in sleep and anesthesia.

A new technological development allows for the first time to monitor changes in pupil size and gaze direction behind closed eyes using touchless infrared imaging. In the future, tracking changes in pupil size will help identify a state of wakefulness in sleep, anesthesia, and intensive care and help track the depth of sedation, detect seizures and nightmares, and recognize pain or responsiveness that may occur after trauma and in intensive care departments. The investigators anticipate that this technology has strong potential to become an important tool in clinical care.

The breakthrough was achieved by a team of investigators from Tel Aviv University led by doctoral student Omer Ben Barak-Dror, under the joint supervision of Prof. Yuval Nir from the Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Sagol School of Neuroscience, and the Department of Biomedical Engineering; and Prof. Israel Gannot from the Department of Biomedical Engineering. Other team members include Dr. Michal Tepper, Dr. Barak Hadad, Dr. Hani Barhum, and David Haggiag. The research was published in the journal Communications Medicine.

 

An Eye-Opening Discovery

Prof. Nir explains: “It is often said that the eyes are the windows to the soul”. Indeed, pupil size changes constantly, dilating or contracting to regulate the amount of incoming light, while providing valuable clinical information. We all know that our pupils get smaller in bright light and larger in darkness, but this is only one reason why pupils change size. They also dilate when we’re stimulated, for example when we react to a sudden event or when we are in pain. In such cases, our autonomic nervous system serves as an alarm and prepares us to take action. Tracking pupil size and eye movements can be critical in many clinical situations. However, until now this has been limited to open-eye scenarios. No method allowed anyone to do this when their eyes were closed.

The new research describes innovative technology that combines short-wave infrared (SWIR) imaging with deep learning algorithms to perform touchless pupillometry and eye tracking behind closed eyelids. “To establish and validate our technology, we focused on the pupillary light reflex (PLR) when the pupil constricts in response to a sudden flash of light, and then dilates back to normal. This is a basic reflex that occurs symmetrically across the two eyes in healthy people. We performed experiments testing our technology on the closed eye while comparing the results to the open-eye data,” said Omer Ben Barak-Dror, lead author of the study at Tel Aviv University.

Eye Spy: Monitoring Pupils While You Sleep

Profs. Nir and Gannot add: “Our method can successfully track the precise dynamics of the pupillary light reflex in closed-eye conditions, revealing the changes in pupil size following each light flash in individual subjects, and also accurately estimating where the eye gaze is directed to, within a few degrees accuracy. The system operates at wavelengths where light has its maximum depth of penetration in biological tissue, and by analyzing the data using deep learning algorithms, we can go beyond what is typically possible with standard methods of near-infrared imaging”. Dr. Tepper adds that the information collected using continuous touchless monitoring is a critical element of the patient’s electronic medical record (EMR) and helps with decisions concerning optimal medical treatment.

The investigators concluded: “Our technology, backed by a patent application, paves the way for developing devices with wide-ranging clinical and commercial applications in domains ranging from sleep medicine, through monitoring sedation level and intraoperative awareness in anesthesia, to assessing pain and reactivity in unresponsive patients or neurology intensive care and trauma wards”.

The study was supported by grants from the Zimin Foundation and the breakthrough technology program of the Israeli Ministry of Science and Technology.

Can Parkinson’s Treatment be Enhanced by AI Tech?

TAU researchers developed an AI-powered wearable to track FOG episodes in Parkinson’s patients.

Researchers at TAU’s Faculty of Medical & Health Sciences invited the international community of machine learning researchers to participate in a contest devised to advance their study and assist neurologists: developing a machine learning model to support a wearable sensor for continuous, automated monitoring and quantification of FOG (freezing of gate) episodes in people with Parkinson’s disease. Close to 25,000 solutions were submitted, and the best algorithms were incorporated into the novel technology.

The study was led by Prof. Jeff Hausdorff from the Department of Physical Therapy at the Faculty of Medical & Health Sciences and the Sagol School of Neuroscience at Tel Aviv University, and the Center for the Study of Movement, Cognition, and Mobility at the Tel Aviv Medical Center, together with Amit Salomon and Eran Gazit from the Tel Aviv Medical Center. Other investigators included researchers from Belgium, France, and Harvard University. The paper was published in Nature Communications and featured in the Editors’ Highlights.

Prof. Hausdorff, an expert in the fields of gait, aging, and Parkinson’s disease, explains: “FOG is a debilitating and so far unexplained phenomenon, affecting 38-65% of Parkinson’s sufferers. A FOG episode can last from a few seconds to more than a minute, during which the patient’s feet are suddenly ‘glued’ to the floor, and the person cannot begin or continue walking. FOG can seriously impair the mobility, independence, and quality of life of people with Parkinson’s disease, causing great frustration, and frequently leading to falls and injuries”.

Amit Salomon adds: “Today the diagnosis and tracking of FOG are usually based on self-report questionnaires and visual observation by clinicians, as well as frame-by-frame analysis of videos of patients in motion. This last method, currently the prevailing gold standard, is reliable and accurate. Still, it has some serious drawbacks: it is time-consuming, requires the involvement of at least two experts, and is impracticable for long-term monitoring in the home and daily living environment. Researchers worldwide are trying to use wearable sensors to track and quantify patients’ daily functioning. So far, however, successful trials have all relied on a very small number of subjects”.

TAU’s AI Challenge Advances FOG Tracking

In the current study, the researchers collected data from several existing studies, relating to over 100 patients and about 5,000 FOG episodes. All data were uploaded to the Kaggle platform, a Google company that conducts international machine learning competitions. Members of the worldwide machine learning community were invited to develop models that would be incorporated into wearable sensors to quantify various FOG parameters (e.g. duration, frequency, and severity of episodes). A prize of $100,000, funded by Kaggle and the Michael J. Fox Foundation for Parkinson’s Research, was offered for the best solutions. 1,379 groups from 83 countries rose to the challenge, ultimately submitting a total of 24,862 solutions. The results of the best models were very close to those obtained through the video analysis method, and significantly better than previous experiments relying on a single wearable sensor.

Moreover, the models led to a discovery: an interesting relationship between FOG frequency and the time of day. Co-author Eran Gazit notes: “We observed, for the first time, a recurring daily pattern, with peaks of FOG episodes at certain hours of the day, that may be associated with clinical phenomena such as fatigue, or effects of medications. These findings are significant for both clinical treatment and continued research about FOG”.

Prof. Hausdorff: “Wearable sensors supported by machine learning models can continuously monitor and quantify FOG episodes, as well as the patient’s general functioning in daily life. This gives the clinician an accurate picture of the patient’s condition at all times: has the illness improved or deteriorated? Does it respond to prescribed drugs? The informed clinician can respond promptly, while data collected through this technology can support the development of new treatments. In addition, our study demonstrates the power of machine learning contests in advancing medical research. The contest we initiated brought together capable, dynamic teams all over the world, who enjoyed a friendly atmosphere of learning and competition for a good cause. Rapid improvement was gained in the effective and precise quantification of FOG data. Moreover, the study laid the foundations for the next stage: long-term 24/7 FOG monitoring in the patient’s home and real-world environment”.

Want to Fall in Love? Step Outside in The Sun

Exposure to ultraviolet radiation from sunlight enhances romantic passion in humans

Any Tel Avivian will tell you that the perfect place for a first date is at the beach. Now, we have the science to support that claim. Researchers at Tel Aviv University have found that exposure to ultraviolet radiation from sunlight enhances romantic passion in humans. In the study, men and women were exposed to UVB (ultraviolet radiation type B) under controlled conditions, and the findings were unequivocal: increased levels of romantic passion in both genders.

Sun + Skin = Love

The study revealed that exposure to sunlight affects the regulation of the endocrine system responsible for the release of sexual hormones in humans. The discovery may lead to practical applications down the line, such as UVB treatments for sexual hormone disorders.

In animal models, the effect was dramatic: the females’ hormone levels rose significantly, enlarging their ovaries and prolonging their mating season; the attraction between males and females increased; and both were more willing to engage in sexual intercourse.

The researchers repeated the experiment on the animal model, this time removing from the skin a protein called p53, which identifies DNA damage and activates pigmentation during exposure to sunlight as protection against its adverse effects. The removal of the protein eliminated the effect of UVB exposure on the animals’ sexual behavior, convincing the researchers that exposure to radiation through the skin was the cause of the observed hormonal, physiological and behavioral changes, and that the protective system is also responsible for the regulation of sexuality.

Furless Humans and Sun Exposure

In the 32 human subjects of the study, all treated with UVB phototherapy at the Tel Aviv Sourasky (Ichilov) and Assuta Medical Centers, both genders exhibited a rise in romantic passion, and males also noted an increase in levels of aggression.

Similar results were found when the subjects were asked to avoid sunlight for two days, and then tan themselves for approximately 25 minutes. Blood tests revealed that exposure to sunlight resulted in a higher release of hormones like testosterone compared to one day before exposure. A rise in testosterone in males during the summer was also found in analyses of data from the Israeli health maintenance organizations Clalit and Maccabi Health Services.

Prof. Carmit Levy (on the left) & PhD student Roma Parikh.

The new discovery from TAU may lead to future practical applications, such as UVB treatments for sexual hormone disorders. The breakthrough opens up for further discoveries in basic science, “As humans, we have no fur, and our skin is thus directly exposed to sunlight. We are only beginning to understand what this exposure does to us, and the key roles it might play in various physiological and behavioral processes. It’s only the tip of the iceberg,” says Prof. Carmit Levy from the Department of Human Molecular Genetics and Biochemistry at the Sackler Faculty of Medicine.

The study was led by PhD student Roma Parikh and Ashchar Sorek from the laboratory of Prof. Levy. UVB phototherapy was administered to the subjects at the Tel Aviv Sourasky (Ichilov) and Assuta Medical Centers. The groundbreaking discovery was published as a cover story in the prestigious scientific journal Cell Reports

Can Smartwatches Prevent Pandemic Outbreaks?

Researchers Discover How Smartwatches Can Stop Disease Spread by Early Detection

Researchers from the Department of Industrial Engineering at TAU’s Faculty of Engineering led a two-year study in which participants wore smartwatches that measured biomarkers and answered questions about their health every day. The results indicate that the wearable technology identified a change in key physiological parameters one to three whole days before the user felt the first symptom of the disease: a gap of 23 hours for COVID-19, 62 hours for group A streptococcus (GAS), and 73 hours for influenza.

The researchers: “Early diagnosis enabled by wearable technologies can be critical for inducing behavioral changes, such as reduced social contacts at an early stage, when the disease is most infectious. Potentially, this can prevent the spread of disease and even preempt global pandemics in the future”.

The study was led by Prof. Dan Yamin, an expert in epidemiology and infectious disease modeling and Head of the Lab for Digital Epidemiology and Health Analytics, and Prof. Erez Shmueli, Head of the Big Data Lab, both from TAU’s Department of Industrial Engineering. Other participants included: research students Shachar Snir and Matan Yechezkel from the Department of Industrial Engineering, Dr. Tal Patalon from the Kahn Sagol Maccabi Research and Innovation Center at Maccabi Healthcare Services and Yupeng Chen and Prof. Margaret Brandeau from the Department of Management Science and Engineering at Stanford University. The paper was published in Lancet Regional Health Europe.  

Prof. Yamin: “Infectious diseases and pandemics pose a great threat to humanity, and we must harness our scientific and technological abilities to prevent them. Previous studies have shown that during the recent pandemic about 40% of all transmissions occurred about a day before the first symptoms appeared. In other words, the person transmitting the disease was unaware they were infected. In this study we checked whether wearable technologies could provide earlier diagnosis, to reduce contagion and prevent the spread of infectious diseases”.

Tracking Key Health Changes

During the two-year study, 4,795 Israelis over 18 years of age wore a smartwatch that continuously monitored key physiological parameters, focusing on pulse rate at a 15-second resolution and HRV (Heart Rate Variability). Prof. Yamin explains: “Pulse rate and HRV provide crucial information about the two most important systems in our body – the heart and the brain. Our brain constantly consumes energy, burning oxygen provided by the cardiovascular system, and consequently, any change in our activity or condition is immediately reflected in a change in HRV. When a person becomes ill, most of the focus goes to a single system – the immune system battling the disease, keeping the heart rate relatively steady, and reducing its variability, the HRV. In this way, changes in HRV indicate physical stress”.

In addition to wearing the smartwatches, participants answered a series of general questions about their condition every day: How do you feel physically? How do you feel mentally? Have you engaged in physical activity? Do you have any specific symptoms? Etc. In addition, they were provided with home test kits for three different diseases – COVID-19, influenza, and group A streptococcus – which they used at their discretion. Over two years, the researchers collected 800,000 questionnaires and this data was compared with parallel data from the smartwatch. Altogether, the data included 490 episodes of influenza, 2206 episodes of COVID-19, and 320 episodes of GAS.

Based on their abundant data, the researchers built special models that identified three critical points in time following exposure to an infectious disease. For instance, COVID-19: A. The first physiological anomaly in heart rate measures – 96 hours after exposure, an interval, which the researchers call the ‘digital incubation period’; B. The first symptom noticed by the person –130 hours after exposure, an interval commonly known as the ‘incubation period’; and C. Testing that ultimately diagnosed the disease – usually about 168 hours after exposure, called the ‘diagnostic decision period’. The period from exposure to digital diagnosis, namely the digital incubation period, was even shorter for influenza (24 hours) and GAS (60 hours).

Getting Ahead of the Curve?

Prof. Shmueli: “Early diagnosis is extremely important for preventing the spread of the disease. Moreover, we found that even when our subjects reported first symptoms, they tended to postpone testing for a while – 53 hours for COVID-19, 39 hours for influenza, and 38 hours for GAS. Consequently, for quite a long interval, from exposure to testing, they did not change their social behavior, spreading the disease to others. We found that on average, people performed the test and changed their behavior when the disease was already past its peak, and they were much less likely to infect others. The delay between digital diagnosis and testing – 64 hours in the case of COVID-19, 68 hours for influenza, and 58 hours for GAS – is thus extremely crucial”.

Prof. Yamin: “Our findings indicate that at the population level digital diagnosis can significantly reduce the spread of infectious diseases, by causing people to change their social behavior at a much earlier stage of the disease. This can even prevent the next pandemic – by bringing the basic reproduction number (R0value) to below 1.0, which means that every sick individual transmits the disease to less than one other person, and the disease soon dies out”.

The researchers add that early diagnosis is also critical for effective treatment. Specifically, for COVID-19, existing treatments are very effective only when given early on, preventing severe illness, hospitalization, and even death.

A Milestone in Stopping Pandemics

Prof. Yamin: “In an ERC-funded paper published in October 2019, shortly before the outbreak of the COVID-19 pandemic, I argued that infectious diseases pose the greatest threat of a global catastrophe. The threat is especially great in the modern world, with people traveling all over the globe and potentially spreading new diseases. However, modern technology can help us combat this danger and devise more effective public health strategies. Our new method, using wearable sensors for early detection of contagious disease can potentially reduce the threat of epidemics to a minimum. Smartwatches are a relatively new technology, with enormous potential, and novel, even more sensitive and accurate wearable sensors are constantly being developed. Ultimately, this can be a high-impact tool for preempting future pandemics”.

Victoria

Tok Corporate Centre, Level 1,
459 Toorak Road, Toorak VIC 3142
Phone: +61 3 9296 2065
Email: [email protected]

New South Wales

Level 22, Westfield Tower 2, 101 Grafton Street, Bondi Junction NSW 2022
Phone: +61 418 465 556
Email: [email protected]

Western Australia

P O Box 36, Claremont,
WA  6010
Phone: :+61 411 223 550
Email: [email protected]