Skip to main content

Tag: Medicine

TAU Breakthrough Offers New Hope to Help People With Paralysis Walk Again

Researchers successfully engineer world’s first 3D human spinal cord tissue transplant.

Paralysis from spinal injury has long remained untreatable. Could scientific developments get people affected on their feet again sooner than imagined? In a worldwide first, Tel Aviv University researchers have engineered 3D human spinal cord tissues and implanted them in a lab model with long-term chronic paralysis, demonstrating high rates of success in restoring walking abilities. Now, the researchers are preparing for the next stage of the study, clinical trials in human patients. They hope that within a few years the engineered tissues will be implanted in paralyzed individuals enabling them to stand up and walk again.

How to Reverse Spinal Injury?

“Our technology is based on taking a small biopsy of belly fat tissue from the patient,” explains Prof. Tal Dvir who’s research team led the study. “This tissue, like all tissues in our body, consists of cells together with an extracellular matrix comprising substances like collagens and sugars. After separating the cells from the extracellular matrix we used genetic engineering to reprogram the cells, reverting them to a state that resembles embryonic stem cells – namely cells capable of becoming any type of cell in the body.”

 

Petri dish with tissue samples (Photo: Sagol Center for Regenerative Biotechnology)

From the extracellular matrix the researchers produced a personalized hydrogel, that would evoke no immune response or rejection after implantation. They then encapsulated the stem cells in the hydrogel, and in a process that mimics the embryonic development of the spinal cord, turned the cells into 3D implants of neuronal networks containing motor neurons.

 

Neural net (Photo: Sagol Center for Regenerative Biotechnology)

The human spinal cord implants were then implanted in two different groups of lab models: those who had only recently been paralyzed (the acute model) and those who had been paralyzed for a long time (the chronic model) – equivalent to one year in human terms. Following the implantation, 100% of the lab models with acute paralysis and 80% of those with chronic paralysis regained their ability to walk.

The groundbreaking study was led by Prof. Tal Dvir’s research team at the Sagol Center for Regenerative Biotechnology, The Shmunis School of Biomedicine and Cancer Research, and the Department of Biomedical Engineering at Tel Aviv University. The team at Prof. Dvir’s lab includes PhD student Lior Wertheim, Dr. Reuven Edri, and Dr. Yona Goldshmit.  Other contributors included Prof. Irit Gat-Viks from the Shmunis School of Biomedicine and Cancer Research, Prof. Yaniv Assaf from the Sagol School of Neuroscience, and Dr. Angela Ruban from The Stanley Steyer School of Health Professions at the Sackler Faculty of Medicine, all at Tel Aviv University. The results of the study were published in the prestigious scientific journal Advanced Science.

Visualization of the next stage of the research – human spinal cord implants for treating paralysis (Photo: Sagol Center for Regenerative Biotechnology)

Getting Patients Suffering from Paralysis Back on Their Feet

Encouragingly, the model animals underwent a rapid rehabilitation process, at the end of which they could walk quite well. This is the first instance in the world in which implanted engineered human tissues have generated recovery in an animal model for long-term chronic paralysis – which is the most relevant model for paralysis treatments in humans.

“Our goal is to produce personalized spinal cord implants for every paralyzed person, enabling regeneration of the damaged tissue with no risk of rejection,” says Prof. Dvir.

Based on the revolutionary organ engineering technology developed at Prof. Dvir’s lab, he teamed up with industry partners to establish Matricelf (matricelf.com) in 2019. The company applies Prof. Dvir’s approach in the aims of making spinal cord implant treatments commercially available for persons suffering from paralysis.

Prof. Dvir, head of Sagol Center for Regenerative Biotechnology, concludes: “We hope to reach the stage of clinical trials in humans within the next few years, and ultimately get these patients back on their feet. The company’s preclinical program has already been discussed with the FDA. Since we are proposing an advanced technology in regenerative medicine, and since at present there is no alternative for paralyzed patients, we have good reason to expect relatively rapid approval of our technology.” 

 

The research team (from left to right): Dr. Yona Goldshmit, Prof. Tal Dvir and Lior Wertheim  (Photo: Sagol Center for Regenerative Biotechnology)

 

Ketogenic Diet Likely to Reduce Damage from Traumatic Brain Injuries

TAU-led study finds diet improves spatial and visual memory, lowers signs of brain inflammation, reduces neuronal death and slows down cellular aging.

Traumatic Brain Injury (TBI) is a leading cause of death and long-term disability in the developed world. It is estimated that every year over 10 million people worldwide suffer from traumatic brain injury as a result of head injuries caused by a hard object, a blow, an explosion, road accidents, sports injuries, etc. Such traumas can lead to physical, cognitive, behavioral and emotional damage and is also a risk factor for diseases such as Alzheimer’s and Parkinson’s.

At this point, despite the high frequency of brain injuries, there is no proven effective treatment that can help those suffering from this injury.

A new international study piloted by the Tel Aviv University determines that a ketogenic diet may reduce the effects of brain damage after traumatic injury. The study indicates that the diet improves spatial memory and visual memory, lowers brain inflammation indices, causes less neuronal death and slows down the rate of cellular aging.

The study was led by Prof. Chaim (Chagi) Pick, Director of the Sylvan Adams Sports Institute and a member of the Sagol School of Neuroscience, and Ph.D. student Meirav Har-Even Kerzhner, a registered dietitian and brain researcher, both from the Sackler Faculty of Medicine at Tel Aviv University. The findings were published in Scientific Reports, a syndicate journal from the publishers of Nature.

What does a ketogenic diet consist of?

A ketogenic diet which involves changes in the consumption of common foods is based on high-fat percentages and aims to mimic a state of fasting. As part of the diet, the intake of foods that contain carbohydrates (e.g., bread, sugar, grains, legumes, snacks, pastries and even fruits) are significantly restricted and, at the expense of this restriction, high-fat products such as meat, fish, eggs, avocado, butter etc. – are eaten.

This is a diet that can be continued for extended periods of time. The diet causes an increased production of ketone bodies in the liver that are used to generate energy. These ketone bodies are transferred via the bloodstream to the brain providing optimal nourishment.

The diet has been used as a treatment in Israel and around the world for almost 100 years, among children with epilepsy, while in recent years, the ketogenic diet has become popular among those who want to lose weight. It is important to note that, due to the significant nutritional restrictions, it is necessary to consult with a professional such as a doctor or a registered dietitian.

Inspiring Hope

In the study, conducted on model animals, the researchers identified that the ketogenic diet greatly improves the patient’s brain function. For this purpose, the researchers used advanced methods that included, among other things, behavioral-cognitive tests, biochemical tests and immunohistochemical cell staining (a technique in biology for the detection and placement of proteins in a cross section of tissue). The mechanism by which a ketogenic diet succeeds in benefiting the results of brain damage has not yet been fully revealed, but studies show that it has an antioxidant and metabolic effect on mitochondria (essential organelles in the cell, the its primary function of which is energy production and respiration), lowers free radical production and raises ATP (a major molecule in cellular biochemical channels). 

“The findings were unequivocal and showed that the ketogenic diet improves spatial memory and visual memory, lowers indices of inflammation in the brain and in addition, also slows the rate of cellular aging,” says Prof. Pick. “These results may open the door to further research that will inspire hope for those suffering from traumatic brain injuries, and their family members.”

Featured image: Prof. Chaim Pick and Ph.D. student Meirav Har-Even Kerzhne

Viruses and Game Theory

TAU researchers discover new mechanism for communication between viruses and bacteria.

Phages are viruses that attack bacteria. Many phages can exist in one of two states: active (lysis), in which the phages attack and destroy bacteria, or dormant, in which they remain passive within the bacteria, replicating themselves but doing no damage (lysogeny). Phages of this type must decide whether to be active or dormant every time they infect a new host. If they decide to be dormant for a time, they must also decide when to ‘wake up’ and attack. As in all dilemmas, it’s important to base the decision upon solid, reliable information.

Researchers at Tel Aviv University have discovered that just like humans with Game Theory, phages weigh all their options and make an informed decision on whether it is time to exit the dormant state and attack their bacterial host. The study was led by Prof. Avigdor Eldar of The Shmunis School of Biomedicine and Cancer Research at Tel Aviv University, together with his students and partners from the Weizmann Institute of Science. The paper was published in December 2021 in the journal Nature Microbiology.

According to the researchers, it has been assumed for some time that a phage bases its decision to exit the dormant state on information regarding the condition of its bacterial host: when the host shows signs of substantial DNA damage (death throes, so to speak), it is in the phage’s interest to leave it and try to infect other bacteria.

The new study discovered an additional mechanism of communication between bacteria and phages: apparently, some phage families have developed a more complex decision-making strategy, a kind of ‘phage game theory’, in which the phage receives information not only from its own host but also from neighboring bacteria.

What’s Going On in The Neighborhood?

Prof. Eldar explains: “When a phage is dormant within a bacterial cell, it forces its host to constantly produce small communication molecules called arbitrium, to which the phage listens via a special receptor. Thus, the presence of high levels of these molecules indicates that neighboring bacteria also contain phages. When this happens, even if its own host exhibits DNA damage, the phage refrains from becoming active. Since every bacterium can only host one dormant phage, the phage makes an informed decision: it’s better to let the host try to repair itself than to ‘betray’ it, since all neighboring bacteria are already taken.”

Prof. Eldar and his team used a range of genetic and biomolecular methods to track the biochemical communication signals passing between the bacteria and phages. In a former study they used a fluorescent marker to show that communication methods used by phages, as well as a large family of similar communication systems (know generally as ‘quorum sensing’) are used only to get signals from close neighbors. “Essentially, the bacteria have developed two separate communication systems – one for long-range communication, and the other for short distances only, used to sense the state of their immediate neighbors,” says Prof. Eldar. “In the phage’s case, it controls communication, and is only interested to know whether its close neighbors, which it might easily infect, are already occupied.”

Prof. Eldar concludes: “Several years ago, Prof. Rotem Sorek and his team at the Weizmann Institute identified communication between phages for the first time. Such systems had been known to exist between other molecular parasites hosted by bacteria (called plasmids). Our new discovery is the fact that phages use communication even in their dormant state. We have identified components critical for understanding how phages combine information about their host’s condition with information about their neighbors. This is one more important step on the way to deciphering the communication and ‘behavioral economics’ of viruses. Phages have an excellent ability to process information and make the right decision to ensure optimal survival. It will be interesting to see whether viruses residing in more complex organisms but facing similar decisions have also developed comparable systems of communication.”

What’s The Link Between Electrical Voltage and Brain Adaptability?

New study finds direct and significant link between changes in G-protein-coupled receptors and the brain’s ability to adapt to external changes.

Our brain has a large amount of G protein-coupled receptors (GPCR). Activation of these proteins causes a chain of chemical reactions within the cell. These proteins are very common in the brain and are involved in almost every brain activity, such as learning and memory. The nerve cells in which GPCRs are common, experience changes in their electrical voltage.

20 years ago, it was unexpectedly discovered that GPCRs are voltage-dependent, meaning that they sense the changes in the electrical voltage of nerve cells and change their function. However, to date, it has not been clarified whether the voltage dependence of GPCR proteins has a physiological significance that affects brain activity, our perception, and behavior. In fact, the scientific mindset was that this voltage dependence has no physiological significance.

The study, published recently in the prestigious journal Nature Communications, was conducted by Dr. Moshe Parnas and his team from the Sackler Faculty of Medicine and the Sagol School of Neuroscience at Tel Aviv University.

The Protein that Influences our Sense of Smell

Dr. Parnas and his team investigated, by means of the olfactory system of the fruit fly, whether the voltage dependence of GPCRs is important for brain function. To this end, the researchers decided to focus on one receptor from the G protein-coupled receptor family called “Muscarinic Type A”. This protein is involved, among other things, in habituation to an odor, a process in which the intensity of the reaction to the odor decreases as a result of continuous exposure to it. Thanks to this mechanism, a few minutes after entering a room containing a distinct odor – we stop smelling it.

Dr. Parnas explains: “Nerve cells are able to communicate with each other and brain flexibility is expressed in the ability of nerve cells to set up new connections with each other and change existing connections – and thus influence behavior. Muscarinic Type A protein is involved in strengthening the bond between nerve cells, and strengthening of this bond causes fruit flies to get used to the odor and indicates normal brain flexibility.”

During the course of the study, the researchers were able to neutralize the voltage sensor of the “Type A” Muscarinic protein by means of genetic editing, and thus eliminate its dependence on the electrical voltage of the nerve cell. The researchers found, by applying molecular, genetic and physiological methods, that disabling the voltage sensor actually causes uncontrolled brain flexibility and consequently the process of excessive and uncontrolled habituating to an odor.

 

Dr. Moshe Parnas

Control Mechanism Uncovered

Dr. Parnas adds: “We found that the receptor in question is very much involved in strengthening the intercellular bond in the brain, much more than what we thought. When we turned off its voltage sensor, the connection between the nerve cells became too strong.”

According to Dr. Parnas, “These findings change our perception of G-protein-coupled receptors. To date, no reference has been made to the effect of electrical voltage on their function and its implications on brain flexibility and conduct. These receptors are involved in many systems and brain diseases and we have now discovered a control mechanism upon which an attempt at drug treatment can be based.”

“Following this, we are continuing to investigate additional receptors. It is reasonable to assume that their dependence on the electrical voltage is important in other systems and not only in the olfactory system [i.e. the bodily structures that serve the sense of smell].”

This study by Dr. Parnas is a follow-up to a study conducted by his parents about two decades ago, which focused solely on the protein level. The current study by Dr. Parnas and his team advances to the next stage, connecting molecules, brain and conduct and indicating, for the first time, that eliminating their ability to sense electrical voltage affects brain activity and our ability to optimally adapt to the environment.

As Pandemic Persists, TAU Forges Ahead with COVID-19 Research on All Fronts

The University’s Center for Combating Pandemics leads research efforts in a range of fields.

As the COVID-19 pandemic nears the end of a second year, Tel Aviv University is maintaining its fast pace of scientific discovery in the global battle against coronavirus.  

Building on the University’s innovation record, TAU in 2020 launched the Center for Combating Pandemics. The Center harnesses the collective power of academia, hospitals, government and industry to promote research and guide government policy. It is the first entity of its kind in Israel, and potentially the world.  

Members of the Center include more than 100 research groups comprised of top TAU experts from all scientific disciplines across campus. Among them, over 60 researchers have, until now, conducted projects related to COVID-19. 

Academic Powerhouse

To date, the Center’s members have published findings from dozens of COVID-19 studies. Select examples include: 

Prof. Noam Shomron (Medicine) spearheaded a novel approach to remote monitoring of COVID-19 patients that flags early cardiovascular warnings of worsening health. More here.  

Prof. Shoshana Shiloh (Social Sciences) and team devised a model to determine the psychological and social factors that predict who will voluntarily take the COVID-19 vaccine.  

Prof. Dan Yamin’s (Engineering) lab developed a “big data” COVID-19 detection technology that could be used to reduce viral spread and help shape more efficient testing policy. More here.  

Prof. Isaac Sasson (Engineering) led a study to help improve understanding of COVID-19 mortality and age in countries with limited data. More here.  

A team led by Prof. Saharon Rosset (Exact Sciences) built a statistical model to better understand SARS-CoV-2 evolution and to predict future mutations of the virus, particularly those which lead to new variants. 

Prof. Aeyal Gross (Law) and team examined legal and public health implications of Israel’s “Green Pass” proof-of-vaccination rules under the country’s pandemic response. More here.  

Through big data methods, Prof. Tal Pupko’s (Life Sciences, Shmunis School) found that the swift implementation of lockdowns, rather than their strictness, was more effective in reducing COVID-19 mortality rates. More here.  

New Findings on the Horizon

Currently, the TAU researchers from the Center have approximately 30 ongoing coronavirus projects, including:  

Prof. Dan Peer (Life Sciences), TAU Vice President for Research & Development, is exploring best practices to advance the bourgeoning technology behind non-viral mRNA vaccines. 

Prof. Adi Stern’s (Life Sciences, Shmunis) lab has been studying the evolution of SARS-CoV-2, including the origin and behavior of the Omicron variant. More here.  

Prof. Ron Shamir (Exact Sciences) has teamed up with local hospitals to explore early predictors of deterioration in COVID-19 patients using machine-learning and “big data” methods. 

Prof. Yael Benyamini (Social Sciences) is leading a broad study on pregnancy and childbirth that surveyed the concerns of pregnant women about childbearing amid COVID-19. 

Prof. Miri Yemini (Humanities) & Dr. Efrat Blumenfeld (Arts) are leading an urban-sociological examination of remote teaching and learning during times of social distancing. 

Upcoming Events

In March, the Center plans to hold its first international conference to highlight recent COVID-19 research. The event will also recognize trailblazing research fellows and grant recipients. For registration and updates, visit: https://en-pandemics.tau.ac.il/save-the-date-first-tccp-convention .

Featured News: More than 100 research groups from all scientific disciplines across TAU campus are on the frontlines of the pandemic battle. (Photo: Moshe Bedarshi)

Medicinal Cannabis Oil Effective for Treating Autism

Treatment improves both behavioral and biochemical parameters of the disease.

Autism is a neurodevelopmental disease, and its main symptoms are social deficiencies and compulsive behaviors. Cases range from mild to severe, and causes are both genetic and environmental. Researchers at Tel Aviv University have successfully treated autism in animal models with medical cannabis oil, improving behavioral and biochemical parameters.

Advancing in Reverse Order

In about 1% of all autism cases, a mutation in a single gene, called Shank3, is associated. While testing of medicinal cannabis traditionally begins with humans, in the current study PhD student Shani Poleg and Prof. Daniel Offen of TAU’s Sackler Faculty of Medicine, Felsenstein Medical Research Center and Sagol School of Neuroscience used animal models with a mutation in Shank3 to test the effectiveness of cannabis oil for alleviating symptoms of autism. The results of the surprising study were published in Translational Psychology published by Nature.

“We saw that cannabis oil has a favorable effect on compulsive and anxious behaviors in model animals,” says Shani Poleg. “According to the prevailing theory, autism involves over arousal of the brain which causes compulsive behavior. In the lab, in addition to the behavioral results, we saw a significant decrease in the concentration of the arousing neurotransmitter glutamate in the spinal fluid – which can explain the reduction in behavioral symptoms.”

A Little Euphoria Makes All the Difference

Attempting to determine which components of cannabis oil alleviate symptoms of autism, the researchers found that THC, the main psychoactive compound in cannabis which is responsible for the euphoric sensation associated with its use, is effective in treating autism, possibly even in small quantities.

“Clinical trials testing cannabis treatments for autism usually involve strains containing very large amounts of CBD – due to this substance’s anti-inflammatory properties, and because it does not produce a sense of euphoria,” explains Poleg. “Moreover, the strains used for treating autism usually contain very little THC, due to apprehension regarding both the euphoria and possible long-term effects.”

“In the second stage of our study we inquired which active substance in cannabis causes the behavioral improvement, and were surprised to discover that treatment with cannabis oil that contains THC but does not contain CBD produces equal or even better effects – both behavioral and biochemical. Moreover, our results suggest that CBD alone has no impact on the behavior of model animals.”

Addressing Existing Misinformation

Prof. Daniel Offen says, “Since cannabis is not defined as a medication, trials have already been conducted in children and adolescents with autism – without any preliminary studies addressing issues like the effect of cannabis on biochemical processes in the brain, spinal fluid or blood, and who can benefit from which type of cannabis oil. There is a great deal of misinformation on the subject of medicinal cannabis and autism, and Shani Peleg’s doctoral project represents pioneering basic research with regard to treating autism with cannabis oil.”

“This is an initial study,” concludes Poleg. “But we hope that through our basic research we will be able to improve clinical treatments. Our study shows that when treating autism with medicinal cannabis oil there is no need for high contents of either CBD or THC. We observed significant improvement in behavioral tests following treatments with cannabis oil containing small amounts of THC and observed no long-term effects in cognitive or emotional tests conducted a month and a half after the treatment began.”

TAU Students Racing Towards a Greener Campus

As part of Tel Aviv University’s initiative to reduce its environmental footprint to help combat the global climate crisis, the Entrepreneurship Center rallied 73 students to the cause and held a hackathon aimed at generating innovative solutions for a greener and more sustainable campus. The event was organized in cooperation with Shlomo Meltzer Institute for Smart Transportation and TAU’s Student Union.

Students were challenged to come up with practical solutions to one out of two central issues for cutting down pollution and waste: reducing the daily car traffic to campus and encouraging the use of reusable dishware on campus.

Fifteen experts mentored the students throughout the competition, which also featured professional enrichment and industry insider lectures on how organizations are addressing environmental challenges today.

Vehicular Pollution Challenge Winners

First Place: TAUapt

The winning team worked under the assumption that most TAU students residing in Tel Aviv rely on public transportation and therefore, do not use a car. What could encourage more of this behavior?

By enabling more students to live in Tel Aviv, the number of vehicles commuting to campus could further decrease. The team conceptualized a house hunting app, similar in nature to the existing job hunting platform AllJobs – but for apartments – which sends its subscribers instant messages through WhatsApp about apartments that are vacating. Team members: Abedallah Barghouti and Ubaydah Wattad.    

 

The TAUapt Team receives the prize for winning the competition’s Vehicular Pollution Challenge

Second Place: BIVPIsrael

The team suggested that the main difficulty for drivers of electric bicycles and scooters is the need to carry around a helmet and battery throughout the day. The team proposed a solution for storage compartments in which both helmet and battery can be left, and the latter can be charged, using solar-generated electricity, while the vehicle remains locked nearby.

Third Place: The Hitchhikers

The team proposed a way to encourage carpooling to campus by offering benefits to students and faculty members. They decided to appeal to people’s pockets – not their ideology.

Reusable Dishware Challenge Winners

First Place: Tengo

To cut down waste from single-use plastics, the Tengo team proposed a collaborative circular model based on the use of reusable dishware marked with a barcode. The reusable dishware is returned to collection boxes after use, where the users are credited. The dishware then gets   transported, cleaned and distributed back to campus restaurants. Team members: Chen Agassi, Idan Stark, Roi Farjun and Tali Aknin.

The Tengo Team receives the prize for winning the competition’s Reusable Dishware Challenge

Second Place: Go Clean Go Green

The team proposed a platform to incentivize the use of reusable dishware by awarding store credits for popular retailers. Through barcode-scanning technology on reusable cups and more, one earns redeemable points with every swipe.  

Third Place: TAUBIS

A game app that ranks businesses according to their degree of eco-friendliness. Students enjoy services similar to food delivery platforms like UberEats, Wolt or 10bis, accumulation of financial and ecological points.

Yair Sakov, Head of TAU’s Entrepreneurship Center: “Sustainability and the circular economy are key issues promoted by the Entrepreneurship Center; there is no field more important than this to initiate and flood innovation.”

The Competition’s Judges

The judges in the competition included Knesset Member Prof. Alon Tal, former Head of Tel Aviv University’s Department of Public Policy; Miki Haimovich, Chairperson of the Heschel Center for Sustainability; Asi Schmelzer, Chairman of the Shlomo Group; Yuval Shani, VP of Technology and Innovation at Shlomo Group; Lior Hazan, Chairperson of TAU’s Student Union; Prof. Colin Price, Head of TAU’s Department of Environmental Studies; Prof. Hadas Maman, Head of the Environmental Engineering Program at TAU’s Faculty of Engineering; Dr. Ilit Oppenheim, Director at Shlomo Schmelzer Institute for Smart Transportation; Orlie Gruper, General Partner in Mobilitech Capital; Shani Raved, Global Operations Strategy Lead and Product Manager at Lime.  

Parent Smartphone Use Could Harm Child Development

Mothers devote only 25% of their attention to toddlers when distracted, consequences can be far-reaching.

A new study from Tel Aviv University found that mothers devote only 25% of their attention to their toddlers while using smartphones, a practice which may impair child development. The researchers believe the findings are applicable to fathers as well.

To conduct the study, researchers monitored dozens of mothers who were asked to perform three tasks alongside their toddlers, aged two to three: Browse a specific Facebook page and like videos and articles that interest them; read printed magazines and mark articles that interest them; and finally, play with the child while the smartphone and magazines were outside the room (uninterrupted free play).

The goal was to simulate situations in real life where the mother has to take care of her child, while at the same time devoting some of her attention to her smartphone. To encourage natural behavior, the mothers were unaware of the purpose of the experiment when browsing a smartphone or reading a printed magazine compared to periods of uninterrupted free play.

The results of the new study, which was led by Dr. Katy Borodkin of the Department of Communication Disorders at The Stanley Steyer School of Health Professions, Sackler Faculty of Medicine of Tel Aviv University, were published in the top-tier Journal of Child Development.

When Mom Reads a Really Good Post

“The mothers talked up to four times less with their children while they were on their smartphones,” said Dr. Borodkin. Not only did they exchange fewer conversational turns with the toddler, the quality of the interactions was also poorer, as the mothers provided less immediate and content-tailored responses, and more often ignored explicit child bids. “Even when they were able to respond while browsing Facebook, the quality of the response was reduced – the mothers kept their responsiveness to a bare minimum to avoid a complete breakdown in communication with the toddler.”

While the researchers did not find that one medium distracted the mothers more than the other between smartphones and magazines, Borodkin noted that: “It is clear that we use smartphones much more than any other media, so they pose a significant developmental threat.

While the study focused on the mothers, the researchers believe the findings characterize communication interferences between fathers and their toddlers as well, since the smartphone usage patterns are similar between men and women.

WATCH: Dr. Katy Borodkin explains how extensive use of smartphones by parents might damage toddlers’ development

Parents, Put Your Phones Away! 

As the mothers performed the tasks, the researchers assessed three components of mother-child interaction: They first examined maternal linguistic input, the spoken content that the mother conveys to the child, regarded as an important predictor of a child’s speech development. Previous studies revealed that reduced linguistic input leads to decreased vocabulary in children, a shortcoming that may extend to adulthood.

Next, the researchers examined how interactive the discourse was. Known as “conversational turns,” the back-and-forth discourse between parent and child is a predictor of language and social development, as the child learns that he or she has something to contribute to the interaction as well as the basic social norms of social interactions.

Finally, maternal responsiveness was examined through the extent the mother responded to their child’s speech. This was measured by the immediacy of the response and its contingency on what the child said. For example, when the child says “look, a truck”, there is no comparison between a response such as “yes, that’s great” and a response such as “correct, this is a red truck, like the one we saw yesterday”. This measure is the basis for almost every aspect of child development: linguistic, social, emotional, and cognitive.

“We currently have no evidence suggesting an actual effect on child development related to the parental use of smartphones, as this is a relatively new phenomenon. However, our findings indicate an adverse impact on the foundation of child development. The consequences of inadequate mother-child interaction can be far-reaching.”

Breakthrough TAU Discovery Key to Reversing ALS

Findings may lead to ways to delay, or even roll back, the course of the fatal disease in its early stages.

A Tel Aviv University-led research team has uncovered a core mechanism that causes ALS and has succeeded in reversing its effects. While the root cause of ALS remains unknown, the discovery reveals the basic biological mechanism that leads to nerve destruction in the early stages of the incurable disease that afflicts an estimated one out of every 400 people. 

To date, there is no effective treatment to prevent or halt disease progression. The average life expectancy of ALS patients is approximately three years from diagnosis. “This discovery can lead to the development of new therapies that could enable nerve cells to heal before irreversible damage occurs in the spinal cord,” said lead investigator Prof. Eran Perlson of the Sackler Faculty of Medicine and the Sagol School of Neuroscience at TAU. 

New Tool for Combating the Disease 

The team discovered that an abnormal buildup of a protein called TDP-43 in neuromuscular junctions, which translate brain signals into physical movements, leads to the degeneration and death of nerve cells (motor neurons). They found that this hinders the activity of mitochondria, which are critical for cells to function.  

The researchers found that this process occurs during the early stages of ALS, initiating damage to motor neurons before patients develop serious symptoms. Eventually, the deterioration of nerve cells in the brain and spinal cord causes ALS patients to gradually lose voluntary muscle ability, leading to complete paralysis including the inability to breathe independently. 

Reversing the Domino Effect  

Using an experimental molecule (originally developed to enhance neural regeneration after injury), the team demonstrated its success in dismantling the toxic protein buildup found in ALS patients. Additionally, in lab models, the researchers showed that this approach actives the process of nerve regeneration, leading to almost complete rehabilitation from the disease. 

Together with Dr. Amir Dori, director of the clinic for neuro-muscular diseases at Sheba Medical Center, and scientists from the US, UK, Germany and France, Perlson and doctoral students Topaz Altman and Ariel Ionescu conducted the study through a series of experiments. The findings were published in the peer-reviewed journal Nature Communication.

Featured image: Prof. Eran Perlson

Experimental Drug Displays Effectiveness in Treating Symptoms of Autism and Alzheimer’s Disease

Has FDA orphan designation for a rare developmental disorder.

An extensive TAU-led international study found that an experimental drug, which has already been awarded orphan drug designation by the FDA for future treatment of a rare development disorder, may also be used for treating a variety of symptoms relating to autism, intellectual disability, and Alzheimer’s disease.

The drug, NAP, was discovered in the lab of Prof. Illana Gozes of the Tel Aviv University Sackler Faculty of Medicine’s Department of Human Molecular Genetics and Biochemistry. The latest study is an important milestone on the way to developing a drug, or drugs, that will help children with autism stemming from genetic mutations, as well as Alzheimer’s patients.

Groundbreaking Technology

In recent years, the FDA has granted the experimental drug with orphan drug designation and pediatric rare disease designation for treatment of a rare developmental disorder called ADNP syndrome, which can cause a variety of symptoms, among them intellectual disability and autism spectrum disorder.

In the current study, a team of researchers led by Prof. Gozes (also from Sagol School of Neuroscience) developed an innovative lab model and found that NAP can be effective in treating a broad spectrum of symptoms of ADNP syndrome, which is caused by mutations in the ADNP gene (essential to cerebral development and protecting cerebral brain cells). Previous studies showed that ADNP syndrome is related to Alzheimer’s disease and certain types of mental disabilities, developmental delays, and autism.

The study, which is the culmination of the MD/PhD student Dr. Gideon Carmon’s doctoral research, was joined by a team of researchers from Prof. Gozes’s lab: Dr. Shlomo Sergovich, Gal Hacohen-Kleiman, Inbar Ben-Horin-Hazak, Dr. Oxana Kapitansky, Alexandra Lubincheva, and Dr. Eliezer Giladi. The team was further joined by Dr. Moran Rubinstein, Prof. Noam Shomron, and Guy Shapira of TAU’s Sackler Faculty of Medicine, and Dr. Metsada Pasmanik Chor of Tel Aviv University’s The George S. Wise Faculty of Life Sciences. Researchers from the Czech Republic, Greece, Germany, and Canada also participated. The article was published in the prestigious journal Biological Psychiatry.

Important Milestone

Prof. Gozes explained that: “NAP, in fact, comprises a short segment of the normal ADNP protein. We previously found that treatment using NAP corrects the function of human nerve cells afflicted with ADNP syndrome in a laboratory test-tube. In this study, we sought to examine the efficacy of NAP in treating various aspects of the syndrome using a model with the most harmful mutation, which allowed us to view brain development and facilitate remedying of behavioral problems.”

The researchers found that mice suffering from ADNP syndrome demonstrated a broad spectrum of symptoms, including increased rates of neonatal death immediately after birth, slowed development and abnormal stride, primarily among females, as well as poor voice communication.

Cerebral examinations demonstrated additional findings: A relatively small number of synapses (the points of contact between nerve cells), impaired electrophysiological activity demonstrating a low potential for normal cerebral arousal, as well as excessive buildup of the Tau protein in young mice, similar to those in the brains of elderly Alzheimer’s disease patients.

Prof. Gozes: “In the past, we have found that NAP corrects impaired functioning of ADNP that has mutated in the nerve cell model in the culture. We now examined its effect in vivo – in animals modeling the syndrome (ADNP mutation). To our amazement and joy, we discovered that treatment using NAP normalizes the functioning of these mice for most of the symptoms indicated above!”

Prof. Gozes summarized: “In this study, we examined the effect of the ADNP gene’s most prevalent mutation in a broad spectrum of aspects and found extensive impairment in physical and cerebral functioning parallel to the symptoms of autism, developmental delay, mental disability, and Alzheimer’s disease in humans. Similarly, we examined the potential use of the NAP drug for treating these diseases, and discovered that it is effective against most of these symptoms in lab models. This study is an important milestone on the way to developing a drug, or drugs, that will help children with autism stemming from genetic mutations, as well as Alzheimer’s patients.”

Ramot – Tel Aviv University Tech Transfer Company filed a number of patent applications to protect the technology and its implementation and, in collaboration with Prof. Gozes, is raising funds to finance further clinical research. Similarly, Ramot is in discussions regarding commercial collaboration with pharmaceutical companies. “We’re excited by this new discovery and believe that this is groundbreaking technology that will remedy a variety of symptoms and disabilities in a broad spectrum of orphan diseases,” said Prof. Keren Primor Cohen, CEO of Ramot.

Featured image: Prof. Illana Gozes

Victoria

Tok Corporate Centre, Level 1,
459 Toorak Road, Toorak VIC 3142
Phone: +61 3 9296 2065
Email: [email protected]

New South Wales

Level 22, Westfield Tower 2, 101 Grafton Street, Bondi Junction NSW 2022
Phone: +61 418 465 556
Email: [email protected]

Western Australia

P O Box 36, Claremont,
WA  6010
Phone: :+61 411 223 550
Email: [email protected]