- Aiding the authorities focus quarantine efforts, understand if there are “super-spreading” infected individuals, and predict how quickly the disease spreads or wanes.
- Screening Israeli COVID-19 survivors for antibodies as a basis for therapies and a vaccine.
- Developing novel inhibitors for viral entry and viral activity.
- Finding candidate compounds to kick in the body’s natural immunity to COVID-19 and ability to overcome infection.
- Understanding lung immune responses to viral infection.
- Introducing a robotic system for much faster detection of coronavirus presence in tests.
- Repurposing known and FDA-approved drugs for prevention and treatment.
Tag: Medicine
Tel Aviv University joins national Coronavirus testing system
TAU’s specialized Corona Lab is expected to conduct up to 1,600 tests a day
A medical marvel in 80 hours
The decision to establish a lab was made shortly after the coronavirus crisis broke out in Israel. From start to finish, the lab was built in a record 80 hours, with construction kicking off on Tuesday, March 24th, at 7 AM, and finishing Friday, March 27th. A Health Ministry official yesterday reviewed the lab to ensure that it meets health and safety protocols, and the lab is now fully operational. “We realized immediately how critical testing was and how we at the University could contribute to Israel’s diagnostic landscape,” explains Prof. Munitz. “We contacted University management, who got involved immediately and quickly approved a budget for the project. It was not an easy decision. It was unclear whether the Health Ministry would approve, and we did not know exactly what the protocol was or what was required — but we knew we needed to act. The safety of the team operating the lab is and remains our highest priority, and we are taking every necessary precaution in strict alignment with Health Ministry regulations. I have no doubt that our collaboration with the Health Ministry will greatly assist in advancing the national testing system.”TAU lab identifies effective antibodies from recovered Coronavirus patients
Antibody-based therapies can be used to protect at-risk populations, including medical workers, from the virus
The weak link in the virus chain
In the long run, identifying effective antibodies against virus neutralization could also accelerate the development of vaccines for the disease. Dr. Freund, who together with her team pinpointed the antibodies in blood samples of recovering patients, say that antibodies would be key to identifying the elusive vulnerable Achilles’ heel of the virus, which scientists have identified as somewhere along its spike protein, the structure that allows it to break into a cell. Dr. Freund is collaborating with researchers in San Diego to test the efficacy of antibody treatments in animal models against a live active virus. The trials are scheduled to take place this month. Only if and when the trials are successful in animal models will the option of clinical trials be considered. “If we complete the trials successfully and are able to eventually develop this treatment, it could be used to help treat at-risk patients such as the elderly or immunocompromised patients. Antibodies can also remain active in the blood for many weeks – up to two months – so injecting antibodies can afford medical teams and other at-risk groups temporary protection against the virus.”TAU Student, COVID-19 Sprint Invent Disposable Ventilators to Help Treat Coronavirus Patients
TAU Student, COVID-19 Sprint Invent Disposable Ventilators to Help Treat Coronavirus Patients
Israel’s Health Ministry has approved the use of a prototype in a pilot study Together with COVID-19 Sprint, a technology task force led by Assuta Ashdod Hospital, Rafael Advanced Technology and Weizmann Institute of Science, a doctoral student at Tel Aviv University‘s Iby and Aladar Fleischman Faculty of Engineering is helping to develop an inexpensive disposable ventilator specifically tailored to treat COVID-19 patients. It’s called MANSHEMA, is cheap, suitable for mass production and easy to use, and Israel’s Health Ministry recently approved the use of its prototype in a pilot study. “Around the world, hospitals overwhelmed with COVID-19 patients are experiencing a shortage of ventilators,” explains Stav Bar-Sheshet, a doctoral student of engineering engaged in research for the project. “This is a serious crisis, which requires creative and revolutionary thinking, thinking that will result in the efficient, fast and cheap solutions.” The idea, he says, is to produce a cheap, disposable ventilator from existing parts that are widely available. While MANSHEMA is disposable, it can work nonstop for three months at a stretch. Most critically for the novel coronavirus, the cheaply produced ventilator is tossed out after each use, drastically reducing the risk of infection by medical staff and hospital patients. “Coronary disease is highly contagious,” adds Bar-Sheshet. “The unique idea of the disposable respirator is that after being used on one patient, it will be destroyed and a new ventilator applied to a subsequent patient.” MANSHEMA is a flow driven, electronically controlled system that allows the patient to determine his or her own respiratory rate and to alert of malfunctions and respiratory failures. The system assists the patient to breath by providing what’s called Bi-level Positive Pressure, meaning the system maintains a positive pressure at all times to assist in cases of respiratory distress. Both exhalation and inhalation pressures can be adjusted by both the patient and medical staff. The system is noninvasive and particularly suited to low to moderate risk patients. “An electrically-controlled-mechanical-valve opens and closes the exhaust to allow real-time inhale and exhale,” says Bar-Sheshet. “If the patient stops breathing, alerts are triggered and the system automatically enters a mandatory respiration mode.” In a spirit of friendly competition, COVID-19 Sprint has set up two to three teams for each challenge. Each team contains a core group of builders (product manager, engineers, solution architects), with a clinical advisory group advising each challenge. Volunteers with experience as engineers, product managers, clinicians, care managers, project managers are welcome to join existing teams or create new teams. “To date, the team, with the support of the Health Ministry, have a few prototypes tested by medical staff at Assuta Ashdod Hospital,” concludes Bar-Sheshet. “The Health Ministry helped us meet Helsinki requirements that will now allow us to proceed to a clinical trial on patients with respiratory problems and on COVID-19 patients.”TAU to partner with InnoCan Pharma on revolutionary COVID-19 treatment
The technology, which is expected to be administered by inhalation, will be tested on several lung infections
InnoCan Pharma Corporation announced that its wholly-owned subsidiary, InnoCan Pharma Ltd. of Herzliya Israel, has entered into a sponsored research agreement with Ramot at Tel Aviv University to jointly develop a novel, revolutionary approach to treat COVID-19 by using cannabidiol (CBD) loaded exosomes (“CLX”). Under the terms of the Research Agreement, InnoCan and a team led by Prof. Daniel Offen, a leading researcher specializing in Neuroscience and Exosome technology at Tel Aviv University, will collaborate to develop the cell therapy based product on Prof. Offen’s work in the field. InnoCan and Ramot are collaborating on a new, revolutionary exosome-based technology that targets both central nervous system (CNS) indications and the Covid-19 Corona Virus. CBD-Loaded exosomes hold the potential to provide a highly synergistic effect of anti-inflammatory properties and help in the recovery of infected lung cells. The techology, which is expected to be administered by inhalation, will be tested on a variety of lung infections. Exosomes are small particles created when stem cells are multiplied. Exosomes can act as “homing missiles” when the cell healing properties of the exosomes are combined with the anti-inflammatory properties of CBD. Exosomes also have an important role in cell-to-cell communication, which can be beneficial to additional treatments for CNS indications such as epilepsy and Alzheimer’s Disease.Background
The world is suffering from a rapid rise in illness due to the fast growing spread of the COVID-19 pandemic. The lungs are the organ most affected by COVID-19, causing pneumonia that rapidly progresses to acute respiratory distress syndrome and can further result in respiratory failure, septic shock, multi-organ failure, and in the most severe cases death. Recent in-vivo and in-vitro studies have demonstrated that exosomes derived from mesenchymal stem cells (MSC) can promote regeneration and improve immune reaction processes in damaged tissues. Exosomes contain anti-inflammatory agents that can target inflamed organs. Prof. Offen and his team have already successfully loaded exosomes with various molecules. They have also succeeded in treating different tissue injuries in animal models, while significantly reducing inflammation and pathological impairment. To date, there have been hundreds of clinical studies using exosomes globally, demonstrating their therapeutic potential at different applications. Animal studies have also demonstrated CBD as effective in reducing lung inflammation. Based on these findings, InnoCan believes that its CLX therapy has the potential to treat the COVID-19 virus by combining CBD with exosomes, thereby creating therapeutic synergies. The suggested combination may have strong synergetic effects, thereby increasing the potential efficacy of planned treatments. Prof. Dani Offen, of the Sackler School of Medicine and Sagol School of Neuroscience said, “I am pleased to work with the InnoCan team on this exciting CLX development project. We are facing a challenging time, and I believe our unique approach holds a promise to offer a treatment for COVID-19, pneumonia and perhaps for other lung inflammations as well.” Iris Bincovich, CEO of InnoCan’s CEO, also commented, “COVID-19 has quickly become one of the largest challenges in healthcare today. With the development of CLX, we are creating a new treatment, to join the global mission to combat the effects of COVID-19. We are determined to make a difference as quickly as possible to assist patients worldwide.” Keren Primor Cohen, CEO of Ramot at Tel Aviv University, summarized, “We hope that this collaboration with Innocan will assist in transforming Prof. Offen’s promising technology into a real treatment for the global threat of COVID-19”. Featured image: Prof. Daniel Offen (photo: Jonathan Blum)TAU Scientist Awarded U.S. Patent for Novel Coronavirus Vaccine Design
The patent, approved in March, covers a vaccine that targets the most vulnerable point in a coronavirus’s structure, through which it penetrates human cells
Researchers worldwide are racing at breakneck speed to develop potential vaccines and drugs to fight the novel coronavirus, SARS-Cov-2. Now, the United States Patent and Trademark Office (USPTO) has granted a patent to Tel Aviv University’s Prof. Jonathan Gershoni of the School of Molecular Cell Biology and Biotechnology at TAU’s George S. Wise Faculty of Life Sciences for his innovative vaccine design for the corona family of viruses.
The vaccine targets the novel coronavirus’s Achilles’ heel, its Receptor Binding Motif (RBM), a critical structure that enables the virus to bind to and infect a target cell.
According to Prof. Gershoni, the vaccine would reconstruct the coronavirus’s RBM, a tiny feature of its “spike” protein. Though the virus uses many different proteins to replicate and invade cells, the “spike” protein is the major surface protein that it uses to bind to a receptor — another protein that acts like a doorway into a human cell. After the spike protein binds to the human cell receptor, the viral membrane fuses with the human cell membrane, allowing the genome of the virus to enter human cells and begin infection.
“We have been working on coronaviruses for the last 15 years, developing a method of reconstructing and reconstituting the RBM feature of the spike protein in SARS CoV and subsequently in MERS CoV,” explains Prof. Gershoni. “The moment the genome of the new virus was published in early January 2020, we began the process of reconstituting the RBM of SARS CoV2, the virus that causes COVID-19, and expect to have a reconstituted RBM of the new virus soon. This will be the basis for a new vaccine, which could be ready for use within a year to a year and a half.”
The spike protein is quite large, containing about 1,200 amino acids. Some researchers have limited their research to a region of the spike known as the receptor binding domain (RBD) that comprises some 200 amino acids. However, the problem is that these relatively large areas have a variety of targets, and the immune system produces antibodies for all of them indiscriminately – reducing the effectiveness of a potential vaccine.
The RBM, a highly complex three dimensional structure, is only 50 amino acids long. Functionally reconstituting such a structure would be very challenging, but it would be an extremely effective basis of a vaccine, says Prof. Gershoni.
“The smaller the target and the focus of the attack, the greater the effectiveness of the vaccine,” he adds. “The virus takes far-reaching measures to hide its RBM from the human immune system, but the best way to ‘win the war’ is to develop a vaccine that specifically targets the virus’s RBM.”
Prof. Gershoni’s team has completed their initial steps toward reconstituting the new SARS CoV2’s RBM. The reconstitution of the new SARS CoV2’s RBM and its use as a basis for a new vaccine is covered by an additional pending patent application, filed by Ramot, TAU’s technology transfer arm, to the USPTO.
“Now that we have received serum samples we should be able to isolate RBM-based vaccine candidates in the next month or two,” concludes Prof. Gershoni. “The discovery and production of a functional RBM for the new coronavirus is fundamental and critical for the production of the vaccine we propose.
“Our successful isolation and reconstitution of such a functional RBM will allow the industry to incorporate it into a vaccine, which will be produced by a pharmaceutical company. Development of such an RBM-based vaccine should take months and then would need to be tested in Phase 1, 2 and 3 clinical trials which would then take up to a year.”
Donated Equipment Aids in Urgent Coronavirus Research
Shmunis family gift ramps up the scientific capabilities of the School of Molecular Cell Biology and Biotechnology.
Tel Aviv University Sets Up Emergency Lab to Expand COVID-19 Testing
specialized lab, run by TAU researchers and graduate students, was built in 3 days
University has built an emergency COVID-19 testing lab, which will allow Israel to perform an additional 2,000 coronavirus tests per day. The new facility was born virtually overnight of the interdisciplinary efforts of TAU researchers, graduate students and management staff of the Sackler Faculty of Medicine and the George S. Wise Faculty of Life Sciences. Construction for the lab began on Tuesday, March 24th, at 7 a.m., and was completed Friday, March 27th, with engineers, construction workers, professors and graduate students working around the clock. A Health Ministry official reviewed the lab to ensure that it meets health and safety protocols before commencing operations. “We realized immediately how critical testing was and how we at the University could contribute to Israel’s diagnostic landscape,” explains Prof. Ariel Munitz of Sackler’s Faculty of Medicine, who spearheaded the establishment of a testing lab on campus. “It was not an easy decision. It was unclear whether the Health Ministry would approve, and we did not know exactly what the protocol was or what was required – but we knew we needed to act.”
.jpg)

Live Webinar: Corona Virus crisis and the future of Disaster Management
Insights into the global shifts from a medical, ethical, economic, and mental health perspective – what lies ahead?
Date: Monday, April 6 Time: 11:00 AM EST / 16:00 PM CET / 18:00 PM IL
Join Tel Aviv University’s emergency and disaster faculty and its assessment of the current corona crisis. This interdisciplinary panel of experts will offer insights into the global shifts taking place from a medical, ethical, economic, and mental health perspective and what lies ahead.
The webinar will be moderated by : Dr. Bruria Adini, Head of the Emergency & Disaster Management Department, School of Public Health, Sackler Faculty of Medicine.
Panelists: Dr. Yoav Yehezkeli, Disaster management of biological hazards Prof. Michael Alkan, Infectious diseases & humanitarian aid Prof. Nava Haruvi, Economic aspects Dr. Zohar Rubinshtein – Resilience and mental health Mr. Gili Shenhar, Risk communication
For more information you may refer to our FB event page.
TAU researcher launches urgent push to beat corona
Dr. Natalia Freund is analyzing immunity of Israelis who have recovered from the virus.
TAU researcher Dr. Natalia Freund and her team have abandoned their everyday work of isolating antibodies for HIV and other infectious diseases to urgently fight and treat COVID-19, the new coronavirus. The highly contagious disease has been declared a global pandemic by the World Health Organization, with almost 200,000 cases worldwide at press time.
Freund, a Senior Lecturer in the Department of Microbiology and Immunology at the Sackler Faculty of Medicine, will analyze blood samples from Israelis who have recovered from COVID-19 (eleven at press time). Working with graduate student Michael Mordekovich, she will use cutting-edge technology to isolate and extract special cells that produce antibodies following infection and immunize us against the virus. From these cells, she will isolate antibodies against the virus, produce them in her lab and test them for viral inhibition.
Hope for a vaccine
Freund is hopeful that within a few weeks her team will generate an antibody that will be ready for preclinical trials. The anticipated result is a treatment for COVID-19 patients and a candidate for the development of a vaccine, “although these would be ready in a best-case scenario months down the line,” said Dr. Freund.
Dr. Natalia Freund, testing to beat the coronavirus
In attempts to stem the outbreak as soon as possible, she is working intensively with colleagues at TAU as well as at the Chaim Sheba Medical Center (Tel Hashomer Hospital), Tel Aviv Sourasky Medical Center (Ichilov Hospital), Bar-Ilan University and the Institute for Biological Research.
Aside from Dr. Freund, several more scientists at TAU are working on various aspects of COVID-19 in a campus-wide effort to better understand and overcome the virus.