Tag: Medicine
New Pulsed Electric Field Technology Could Allow for Less Invasive Tumor Molecular Profiling
TAU researchers develop new treatment for rare genetic disorder
Adolescents and young adults with familial adenomatous polyposis bear a high risk of developing cancer
Why does FAP lead to colon cancer?
“To prevent the development of colorectal cancer, FAP patients are closely monitored via frequent colonoscopies to locate and remove their polyps,” Prof. Rosin-Arbesfeld says. “However, some patients must have their colons removed at a very young age, which dramatically affects their quality of life.” In its normal state, APC promotes the production of a protein that inhibits cancer development. But mutations to the APC gene produce an inactive protein that is unable to prevent the development of the polyps. In some FAP patients, the mutations in the APC gene are what are called “nonsense mutations.” “Each sequence of three nucleotides in the DNA is a code that tells the cell to produce a certain amino acid, which are the building blocks of the proteins produced in the body’s cells,” Prof. Rosin-Arbesfeld explains. “At the end of the protein coding sequence, there is usually a ‘stop codon’ to stop the protein production. But in FAP patients with a nonsense mutation, the APC’s stop codon appears prematurely, so the protein production stops prematurely, creating an inactive protein.”Preventing surgical intervention
Previous experiments on cell cultures and mouse models in Prof. Rosin-Arbesfeld’s laboratory revealed that certain types of antibiotics caused cells to “ignore” the mutation stop codon and a normal protein resulted. These trials yielded promising results that led to the clinical trial at Tel Aviv Sourasky Medical Center. “Since the relevant antibiotics were already approved for human use, we decided to move directly from the laboratory to the clinic and to examine the treatment of FAP patients,” says Prof. Rosin-Arbesfeld. In the clinical study carried out by Prof. Kariv and Dr. Shlomi Cohen, director of the Pediatric Gastroenterology Unit at Dana-Dwek Children’s Hospital, 10 FAP patients received the novel antibiotic therapy. Eight of them completed the treatment, which lasted four months. Colonoscopies performed during and after the treatment showed that in seven patients the polyps significantly decreased in number. Moreover, the positive effects of the treatment were evident a year after it began. “Our goal as therapists, in addition to preventing cancer, is to improve the quality of life of our patients and their families and to enable them to live as full and normal lives as possible,” Prof. Kariv concludes. “The new therapeutic approach we are developing may allow patients to delay surgical intervention or even prevent it entirely.” The researchers recently won Tel Aviv University’s SPARK grant, which supports the development of applied research.A better way to kill tumor cells
Engineered cells may be harnessed in new immunotherapy for cancer patients, Tel Aviv University researchers say
Using the body’s own immune system
“Chemotherapy damages all fast-growing cells, including hair follicles and cells that line the gastrointestinal tract, and this attack on healthy cells causes serious side effects, which include hair loss, nausea, mood changes, pain, anaemia, nerve and muscle problems, and kidney issues,” explains Dr. Carmi. “Immunotherapy, on the other hand, is a type of biological therapy that uses the body’s own immune system to seek out and destroy cancer cells. Engineered T cells have been proven very successful in treating blood cancer but attempts to use them to fight solid cancers have been disappointing. “Our engineered cells have now shown efficacy in attacking solid tumors as well,” Dr. Carmi says. CAR T-cell therapy is a form of immunotherapy that uses altered T cells to fight cancer. T cells are a type of lymphocyte, or white blood cell, that plays a central role in the immune response. T cells are collected from the patient and modified in the lab to produce structures called CARs on their surface. These receptors allow the T cells to attach to a specific antigen on the tumor cells and kill them.Fewer side effects, more precision
Side effects from immunotherapy may include severe inflammation, caused by an overactive immune system working to fight tumor cells. “Patients who utilize CAR T-cell therapy experience significantly fewer side effects than with chemotherapy,” adds Dr. Carmi. “And while chemotherapy is only effective while the drug is in the body, immunotherapy provides long-lasting protection against cancer. “Our lab discovered a distinct subset of helper T cells, also known as CD4+ T cells, that express the high-affinity receptor for IgG – an antibody – and efficiently kill tumor cells coated with these antibodies,” explains Dr. Carmi. “This method uses CAR T-cell therapy and combines it with antibody specificity. Based on this discovery we were able to engineer novel T cells with enhanced tumor-killing activity and higher specificity, compared with other T cell-based therapies for cancer. “Our engineered cells have the potential to overcome barriers usually faced by CAR T-cell therapy and have shown efficacy in solid tumors. This finding has the capability to change the way cancer is treated, demonstrating that the immune system can be utilized to identify and fight all types of cancer.”Protein Mapping Pinpoints Why Most Metastatic Melanoma Patients Do Not Respond to Immunotherapy
Lipid metabolism found to affect cancer cells’ visibility to the immune system, say TAU, Sheba Medical Center researchers
Tel Aviv University and Sheba Medical Center researchers say they have discovered why more than half of patients with metastatic melanoma do not respond to immunotherapy cancer treatments.
Wielding proteomics, an innovative “protein mapping” approach, a team of researchers led by Prof. Tami Geiger, Prof. Gal Markel, and Dr. Michal Harel of TAU’s Sackler School of Medicine and Sheba’s Ella Lemelbaum Institute for Immuno-Oncology have answered the burning question: Why do immunotherapy treatments greatly help some patients with melanoma but not affect 60 percent of metastatic melanoma patients?
The researchers, whose findings were published on September 5 in Cell, compared the responses of 116 melanoma patients to immunotherapy — one group in which immunotherapy was successful and a second in which immunotherapy was not successful. Harnessing proteomics, a powerful protein mapping technology, they discovered differences in the metabolism, or energy production process, of the cancer cells of the two groups.
“In recent years, a variety of cancer immunotherapy therapies have been used, therapies that strengthen the anti-cancer activity of the immune system,” explains Prof. Markel, a senior oncologist and scientific director of the Ella Lemelbaum Institute. “These treatments have been shown to be highly effective for some patients and have revolutionized oncology. However, many patients do not respond to immunotherapy, and it is critical to understand why.
“Can we predict who will respond? Can we alter treatment in order to increase responses? In our research, we focused on metastatic melanoma, a devastating disease that until recently had no efficient treatments. It was clear to us that pre-treatment samples from responders and non-responders would be key.”
To better understand treatment resistance mechanisms, the scientists examined tumors taken from 116 patients using proteomics.
“In the proteomic lab, we use an instrument called a mass-spectrometer, which enables global mapping of thousands of proteins,” explains Prof. Geiger, head of TAU’s Proteomics Lab. “We then followed up with extensive computational analysis to identify the proteins that differentiated between the response groups.”
The proteomic comparison identified major differences between responders and non-responders to immunotherapy. “In the responders, we found higher levels of proteins associated with lipid metabolism, which led to better recognition by the immune system,” says Prof. Geiger.
In collaboration with the Salk Institute in San Diego and Yale School of Medicine, researchers then examined their findings in melanoma tissue cultures and a mouse model of metastatic melanoma.
Using genetic engineering, they were able to silence the mechanism responsible for fatty acid metabolism.
“We found that upon silencing this metabolic pathway, the cancer cells manage to ‘hide’ from T-cells that are supposed to detect and destroy them,” says Prof. Geiger. “As a result, cancer in these mice developed at a faster rate compared to the control group.
“In our study, we identified a significant difference between melanoma patients who live for years thanks to immunotherapy, and patients who are not at all affected by the treatment.”
“These findings can also be relevant to many other malignancies,” adds Prof. Markel. “Now, in subsequent studies, we are looking for ways to improve the response to immunotherapy and expand the circle of patients who benefit from it. In addition, we are looking for a method that will allow clinicians to anticipate which patients will respond to treatments.”
Novel Immunotherapy May Prevent Brain Metastases
TAU researchers say injection of synthetic DNA material found to activate brain’s immune cells and kill invading tumor cells
Brain metastases are the final, lethal consequence of many aggressive cancers, and researchers are racing to discover ways of preventing these intractable growths from developing.
A new Tel Aviv University study finds a known adjuvant — an ingredient used in some vaccines that helps create a stronger immune response — that contains synthetic DNA material may be an effective means of preventing brain metastases in patients whose primary tumors have been excised.
Research for this study was led jointly by Dr. Amit Benbenishty of TAU’s Sagol School of Neuroscience, Dr. Pablo Blinder of TAU’s George S. Wise Faculty of Life Sciences, and Prof. Shamgar Ben-Eliyahu of TAU’s School of Psychological Sciences, in collaboration with Dr. Lior Mayo of TAU’s Sagol School of Neuroscience, Prof. Neta Erez of TAU’s Sackler School of Medicine, and Prof. Dritan Agalliu of Columbia University Medical Center. It was published on March 28 in PLoS Biology.
“Some 20 to 40% of lung, breast and melanoma cancer patients develop brain metastases, and current treatments for brain metastases are ineffective,” Dr. Blinder says. “Surgery for removing primary tumors is usually essential, but the period immediately before and after surgery requires that all chemotherapy and radiotherapy be stopped. This creates a high potential for the initiation and rapid progression of deadly metastases.
“Our study showed that an intravenous injection of CpG-C, an adjuvant of synthetic DNA material, during this specific time frame reduces the development of brain metastases,” Dr. Blinder continues. “When the drug is administered systemically, it crosses the blood-brain barrier and works by activating microglia, the brain’s primary immune cells, to kill invading tumor cells.”
The scientists harnessed different mouse models to test the efficacy of the CpG-C drug in reducing brain metastases resulting from different cancers of both mouse and human origin. The research team used a combination of cutting-edge imaging techniques to discover the specific immune cells involved in mediating a protective effect against brain metastases and examine tumor progression in the animal models.
“Currently, patients with small-cell lung carcinoma are given preventative whole-brain radiotherapy to reduce brain metastases, but that has many negative side effects,” Dr. Blinder explains. “Our approach gets the immune troops ‘ready for combat,’ in both the brain and the rest of the body. It’s not tumor specific, and it has a promising safety profile in humans. Prof. Ben-Eliyahu’s group at TAU and others have previously shown that this drug is beneficial in fighting primary tumors and metastases in other organs.
“We hope that this drug can be implemented as a preventative treatment for various types of metastasizing tumors with the goal of preventing or reducing brain metastases.”
The new treatment could be administered to cancer patients undergoing surgery to excise a primary tumor several days before the operation and continuing a few weeks after surgery. The group is currently conducting several studies to verify that the systemic CpG-C treatment does not risk the patients’ health nor the success of surgery to remove a primary tumor.
“We were able to verify that this treatment does not disrupt tissue healing, which is important in the post-operative period,” Prof. Ben-Eliyahu says. “The treatment does not seem to increase the risk of other common surgery-related complications, such as an exaggerated post-operative inflammatory response.
“We are now testing the potential simultaneous use of anti-stress-inflammatory drugs, which we also found effective in reducing perioperative risks of metastases and may mitigate the deleterious stress-inflammatory responses to surgery and potentially to CpG-C treatment. If these tests are successful, we plan to conduct initial studies in cancer patients.”
TAU scientists develop nano-vaccine for melanoma
Injection of nanoparticle has proven effective in mouse models, researchers say
Researchers at Tel Aviv University have developed a novel nano-vaccine for melanoma, the most aggressive type of skin cancer. Their innovative approach has so far proven effective in preventing the development of melanoma in mouse models and in treating primary tumors and metastases that result from melanoma.
The focus of the research is on a nanoparticle that serves as the basis for the new vaccine. The study was led by Prof. Ronit Satchi-Fainaro, chair of the Department of Physiology and Pharmacology and head of the Laboratory for Cancer Research and Nanomedicine at TAU’s Sackler Faculty of Medicine, and Prof. Helena Florindo of the University of Lisbon while on sabbatical at the Satchi-Fainaro lab at TAU. The results were published recently in Nature Nanotechnology.
Creating a nano-vaccine
Melanoma develops in the skin cells that produce melanin or skin pigment. “The war against cancer in general, and melanoma in particular, has advanced over the years through a variety of treatment modalities, such as chemotherapy, radiation therapy and immunotherapy; but the vaccine approach, which has proven so effective against various viral diseases, has not materialized yet against cancer,” says Prof. Satchi-Fainaro. “In our study, we have shown for the first time that it is possible to produce an effective nano-vaccine against melanoma and to sensitize the immune system to immunotherapies.”
The researchers harnessed tiny particles, about 170 nanometers in size, made of a biodegradable polymer. Within each particle, they “packed” two peptides — short chains of amino acids, which are expressed in melanoma cells. They then injected the nanoparticles (or “nano-vaccines”) into a mouse model bearing melanoma.
“The nanoparticles acted just like known vaccines for viral-borne diseases,” Prof. Satchi-Fainaro explains. “They stimulated the immune system of the mice, and the immune cells learned to identify and attack cells containing the two peptides — that is, the melanoma cells. This meant that, from now on, the immune system of the immunized mice will attack melanoma cells if and when they appear in the body.”
A vaccine against cancer
The researchers then examined the effectiveness of the vaccine under three different conditions. First, the vaccine proved to have prophylactic effects. The vaccine was injected into healthy mice, and an injection of melanoma cells followed. “The result was that the mice did not get sick, meaning that the vaccine prevented the disease,” says Prof. Satchi-Fainaro.
Second, the nanoparticle was used to treat a primary tumor: A combination of the innovative vaccine and immunotherapy treatments was tested on melanoma model mice. The synergistic treatment significantly delayed the progression of the disease and greatly extended the lives of all treated mice.
Finally, the researchers validated their approach on tissues taken from patients with melanoma brain metastases. This suggested that the nano-vaccine can be used to treat brain metastases as well. Mouse models with late-stage melanoma brain metastases had already been established following excision of the primary melanoma lesion, mimicking the clinical setting. Research on image-guided surgery of primary melanoma using smart probes was published last year by Prof. Satchi-Fainaro’s lab.
“Our research opens the door to a completely new approach — the vaccine approach — for effective treatment of melanoma, even in the most advanced stages of the disease,” concludes Prof. Satchi-Fainaro. “We believe that our platform may also be suitable for other types of cancer and that our work is a solid foundation for the development of other cancer nano-vaccines.”
Genetic Screen Identifies Genes That Protect Cells from Zika Virus
Genes found to safeguard against infection as well as resuscitate infected cells, TAU researchers say
The Zika virus has affected over 60 million people, mostly in South America. It has potentially devastating consequences for pregnant women and their unborn children, many of whom are born with severe microcephaly and other developmental and neurological abnormalities. There is currently no vaccine or specific treatment for the virus.
A new Tel Aviv University study uses a genetic screen to identify genes that protect cells from Zika viral infection. The research, led by Dr. Ella H. Sklan of TAU’s Sackler School of Medicine, was published in the Journal of Virology on May 29. It may one day lead to the development of a treatment for the Zika virus and other infections.
The study was based on a modification of the CRISPR-Cas9 gene-editing technique. CRISPR-Cas9 is a naturally occurring bacterial genome editing system that has been adapted to gene editing in mammalian cells. The system is based on the bacterial enzyme Cas9, which can locate and modify specific locations along the human genome. A modification of this system, known as CRISPR activation, is accomplished by genetically changing Cas9 in a way that enables the expression of specific genes in their original DNA locations.
“CRISPR activation can be used to identify genes protecting against viral infection,” Dr. Sklan says. “We used this adapted system to activate every gene in the genome in cultured cells. We then infected the cells with the Zika virus. While most cells die following the infection, some survived due to the over-expression of some protective genes. We then used next-generation sequencing and bioinformatic analysis to identify a number of genes that enabled survival, focusing on one of these genes called IFI6. A previous screen conducted by another research group had identified this gene with respect to its role vis-à-vis other viruses.
“IFI6 showed high levels of protection against the Zika virus both by protecting cells from infection and by preventing cell death,” Dr. Sklan continues. “If its yet unknown mode of action can be mimicked, it may one day serve as the basis for the development of a novel antiviral therapy to fight the Zika virus or related infections.”
Together with Dr. Nabila Jabrane-Ferrat of The French National Center for Scientific Research, Dr. Sklan moved the study of the identified genes into Zika-infected human placenta tissues, which serve as a gateway for viral transmission to the fetus. These genes were induced following infection, indicating they might play a protective role in this tissue as well.
“Our results provide a better understanding of key host factors that protect cells from ZIKV infection and might assist in identifying novel antiviral targets,” concludes Dr. Sklan. Moving forward, the researchers hope to discover the mechanism by which the IFI6 gene inhibits infection.
Research for the study was conducted by Dr. Anna Dukhovny of TAU’s Sackler School of Medicine, and bioinformatics analysis conducted by Kevin Lamkiewicz of Friedrich Schiller University. Part of the study was conducted during Dr. Sklan’s sabbatical in Prof. Jae Jung’s lab at the University of Southern California.
Fat cells play key role in Melanoma
Fat cells allow melanoma cells to penetrate the dermis, from which they spread, causing fatal metastases in vital organs, TAU researchers say
Researchers at Tel Aviv University, led by Prof. Carmit Levy and Dr. Tamar Golan of the Department of Human Genetics and Biochemistry at TAU’s Sackler School of Medicine, have discovered that fat cells are involved in the transformation that melanoma cells undergo from cancer cells of limited growth in the epidermis to lethal metastatic cells attacking patients’ vital organs.
“We have answered a major question that has preoccupied scientists for years,” explains Prof. Levy. “What makes melanoma change form, turning aggressive and violent? Locked in the skin’s outer layer, the epidermis, melanoma is very treatable; it is still Stage 1, it has not penetrated the dermis to spread through blood vessels to other parts of the body and it can simply be removed without further damage.
“Melanoma turns fatal when it ‘wakes up,’ sending cancer cells to the dermis layer of skin, below the epidermis, and metastasizing in vital organs. Blocking the transformation of melanoma is one of the primary targets of cancer research today, and we now know fat cells are involved in this change.”
The research was conducted in collaboration with several senior pathologists: Dr. Hanan Vaknin of Wolfson Medical Center, and Dr. Dov Hershkowitz and Dr. Valentina Zemer of Tel Aviv Medical Center.
The study was on published July 23 in Science Signaling and is featured on the journal’s cover.
In the study, the researchers examined dozens of biopsy samples taken from melanoma patients at Wolfson Medical Center and Tel Aviv Medical Center, and observed a suspicious phenomenon: fat cells near the tumor sites.
“We asked ourselves what fat cells were doing there and began to investigate,” adds Prof. Levy. “We placed the fat cells on a petri dish near melanoma cells and followed the interactions between them.”
The researchers observed fat cells transferring proteins called cytokines, which affect gene expression, to the melanoma cells.
“Our experiments have shown that the main effect of cytokines is to reduce the expression of a gene called miRNA211, which inhibits the expression of a melanoma receptor of TGF beta, a protein that is always present in the skin,” says Prof. Levy. “The tumor absorbs a high concentration of TGF beta, which stimulates melanoma cells and renders them aggressive.”
Critically, the researchers have also found a way to block this transformation.
“It is important to note that we found the process reversible in the laboratory: When we removed the fat cells from the melanoma, the cancer cells calmed down and stopped migrating,” adds Prof. Levy.
A trial of mouse models of melanoma yielded similar results: When miRNA211 was repressed, metastases were found in other organs, while re-expressing the gene blocked metastases formation.
In the search for a potential drug based on the new discovery, the researchers experimented with therapies that are known to inhibit cytokines and TGF beta, but which have never before been used to treat melanoma.
“We are talking about substances that are currently being studied as possible treatments for pancreatic cancer, and are also in clinical trials for prostate, breast, ovarian and bladder cancers,” Dr. Golan said. “We saw that they restrained the metastatic process, and that the melanoma returned to its relatively ‘calm’ and dormant state.”
“Our findings can serve as a basis for the development of new drugs to halt the spread of melanoma — therapies that already exist, but were never used for this purpose,” concludes Prof. Levy. “In the future, we are seeking to collaborate with drug companies to enhance the development of the metastatic melanoma prevention approach.”
Image captions:
Fat cells allow melanoma cells to penetrate the dermis, from which they spread, causing fatal metastases in vital organs, TAU researchers say
Researchers at Tel Aviv University, led by Prof. Carmit Levy and Dr. Tamar Golan of the Department of Human Genetics and Biochemistry at TAU’s Sackler School of Medicine, have discovered that fat cells are involved in the transformation that melanoma cells undergo from cancer cells of limited growth in the epidermis to lethal metastatic cells attacking patients’ vital organs.
“We have answered a major question that has preoccupied scientists for years,” explains Prof. Levy. “What makes melanoma change form, turning aggressive and violent? Locked in the skin’s outer layer, the epidermis, melanoma is very treatable; it is still Stage 1, it has not penetrated the dermis to spread through blood vessels to other parts of the body and it can simply be removed without further damage.
Images:
Top: Nano-vaccine mechanism of action: following injection, the nano-vaccine internalizes into immune cells, leading to activation of T cells to recognize and attack melanoma.
Bottom: Prof. Carmit Levy (left) and Dr. Tamar Golan.
Credit for both: Prof. Carmit Levy/AFTA
Antibacterial fillings from TAU may combat recurring tooth decay
New material may prevent one of the costliest and most prevalent bacterial diseases in the world
Tooth decay is among the costliest and most widespread bacterial diseases. Virulent bacteria cause the acidification of tooth enamel and dentin, which, in turn, causes secondary tooth decay.
A new study by Tel Aviv University researchers finds potent antibacterial capabilities in novel dental restoratives, or filling materials. According to the research, the resin-based composites, with the addition of antibacterial nano-assemblies, can hinder bacterial growth and viability on dental restorations, the main cause of recurrent cavities, which can eventually lead to root canal treatment and tooth extractions.
Research for the study was led by Dr. Lihi Adler-Abramovich and TAU doctoral student Lee Schnaider in collaboration with Prof. Ehud Gazit, Prof. Rafi Pilo, Prof. Tamar Brosh, Dr. Rachel Sarig and colleagues from TAU’s Maurice and Gabriela Goldschleger School of Dental Medicine and George S. Wise Faculty of Life Sciences. It was published in ACS Applied Materials & Interfaces on May 28.
Can your fillings fight germ?
“Antibiotic resistance is now one of the most pressing healthcare problems facing society, and the development of novel antimicrobial therapeutics and biomedical materials represents an urgent unmet need,” says Dr. Adler-Abramovich. “When bacteria accumulate on the tooth surface, they ultimately dissolve the hard tissues of the teeth. Recurrent cavities — also known as secondary tooth decay — at the margins of dental restorations results from acid production by cavity-causing bacteria that reside in the restoration-tooth interface.”
This disease is a major causative factor for dental restorative material failure and affects an estimated 100 million patients a year, at an estimated cost of over $30 billion.
Historically, amalgam fillings composed of metal alloys were used for dental restorations and had some antibacterial effect. But due to the alloys’ bold color, the potential toxicity of mercury and the lack of adhesion to the tooth, new restorative materials based on composite resins became the preferable choice of treatment. Unfortunately, the lack of an antimicrobial property remained a major drawback to their use.
“We’ve developed an enhanced material that is not only aesthetically pleasing and mechanically rigid but is also intrinsically antibacterial due to the incorporation of antibacterial nano-assemblies,” Schnaider says. “Resin composite fillings that display bacterial inhibitory activity have the potential to substantially hinder the development of this widespread oral disease.”
From nano materials to major breakthroughs
The scientists are the first to discover the potent antibacterial activity of the self-assembling building block Fmoc-pentafluoro-L-phenylalanine, which comprises both functional and structural subparts. Once the researchers established the antibacterial capabilities of this building block, they developed methods for incorporating the nano-assemblies within dental composite restoratives. Finally, they evaluated the antibacterial capabilities of composite restoratives incorporated with nanostructures as well as their biocompatibility, mechanical strength and optical properties.
“This work is a good example of the ways in which biophysical nanoscale characteristics affect the development of an enhanced biomedical material on a much larger scale,” Schnaider says.
“The minimal nature of the antibacterial building block, along with its high purity, low cost, ease of embedment within resin-based materials and biocompatibility, allows for the easy scale-up of this approach toward the development of clinically available enhanced antibacterial resin composite restoratives,” Dr. Adler-Abramovich says.
The researchers are now evaluating the antibacterial capabilities of additional minimal self-assembling building blocks and developing methods for their incorporation into various biomedical materials, such as wound dressings and tissue scaffolds.