Tag: nanotechnology

Seaweed – A Promising Defense Against Covid-19

Natural substance from marine algae prevents infection.

The lack of access to Covid-19 vaccines results in the deaths of many people and even accelerates the development of new variants. Researchers from Tel Aviv University, led by Prof. Alexander Golberg of the Porter School of the Environment and Earth Sciences, have found that a substance called ‘ulvan’ extracted from edible marine algae prevents the infection of cells with the coronavirus.

The researchers believe this affordable and natural material may help solve serious problems, such as the spread of the coronavirus in large populations, especially in developing countries with limited access to vaccines. The study is still in its early stages, but the researchers are hopeful that the discovery will be used in the future to develop an accessible and effective drug to prevent coronavirus infection.

Affordable Solutions Needed

Prof. Golberg explains: “It is already clear today that the coronavirus vaccine alone, despite its effectiveness, will not be able to prevent the global spread of the pandemic. As long as the lack of access to vaccines remains unaddressed for billions of people in underprivileged communities, the virus is expected to develop increasingly more variants, which may be resistant to vaccines – and the war against the virus will continue.”

“It is very important to find affordable and accessible solutions to suit even economically weak populations in developing countries. With this aim, our lab tested a substance that could be extracted from a common seaweed. Ulvan is extracted from marine algae called Ulva, an edible ‘sea lettuce’ common in places like Japan, New Zealand and Hawaii,” he adds.

Golberg explains that his lab’s rational for exploring the potential use of ulvan for coronavirus defenses was motivated by previous discoveries of its effectiveness in preventing plant viruses along with some human viruses.

Successful Prevention Against Covid-19

To test their hypothesis, the TAU researchers grew Ulva algae and extracted the ulvan from it before sending samples to the Southern Research Institute in Alabama, which deals with infectious diseases. The US researchers built a lab model to test the activity of the substance produced by Prof. Golberg’s team. The cells were exposed to both the coronavirus and the ulvan. It was found that, in the presence of ulvan, the coronavirus did not infect the cells. As opposed to extracts from other algae tested, the substance demonstrated success in preventing coronavirus infection. 

According to the researchers, “The substance was produced in raw production, meaning it is a mixture of many natural substances, and we must find out which one is responsible for preventing cellular infection. After that, we will have to examine how, if at all, it works in humans.”

The research team consisted of Shai Sheffer, Arthur Rubin and Alexander Chemodanov from Dr. Golberg’s laboratory, Prof. Michael Gozin from the School of Chemistry and the Tel Aviv Universicy Center for Nanoscience and Nanotechnology. They collaborated with researchers from the Hebrew University, the Meir Medical Center in Kfar Saba, and the Southern Research Institute in Alabama, USA. The article was published in the journal PeerJ.

Featured image: Specially designed closed system with photobioreactors for seaweed production at TAU

Tired of The Lies?

TAU researchers are catching ‘liars’ at an unprecedented accuracy of 73% by measuring facial muscles’ movements.

Don’t even think of bending the truth around our campus, or we may be on to you. In a new study, Tel Aviv University researchers were able to detect lies with an accuracy of 73% – based on the contraction of facial muscles of study participants. This is a higher rate of detection than any known method. The study identified two different groups of ‘liars’: those who activate their cheek muscles when they lie, and those who activate their eyebrows. The new technology can serve as a basis for the development of cameras and software able to detect deception in many real-life scenarios, such as security and crime.

How to Spot a Liar?

The study was conducted by a team of experts from Tel Aviv University headed by Prof. Yael Hanein of the Center of Nanoscience and Nanotechnology and School of Electrical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, and Prof. Dino Levy from the Coller School of Management. The team included Dr. Anastasia Shuster, Dr. Lilach Inzelberg, Dr. Uri Ossmy and PhD candidate Liz Izakon. The paper was published in the leading journal Brain and Behavior.

The new study was founded upon a groundbreaking innovation from Prof. Hanein’s laboratory: stickers printed on soft surfaces containing electrodes that monitor and measure the activity of muscles and nerves. The technology, already commercialized by X-trodes Ltd., has many applications, such as monitoring sleep at home and early diagnosis of neurological diseases. This time the researchers chose to explore its effectiveness in a different arena – lie detection.

Prof. Levy explains: “Many studies have shown that it’s almost impossible for us to tell when someone is lying to us. Even experts, such as police interrogators, do only a little better than the rest of us. Existing lie detectors are so unreliable that their results are not admissible as evidence in courts of law – because just about anyone can learn how to control their pulse and deceive the machine. Consequently, there is a great need for a more accurate deception-identifying technology. Our study is based on the assumption that facial muscles contort when we lie, and that so far no electrodes have been sensitive enough to measure these contortions.”

Unprecedented Success Rate

The researchers attached the novel stickers with their special electrodes to two groups of facial muscles: the cheek muscles close to the lips, and the muscles over the eyebrows. Participants were asked to sit in pairs facing one another, with one wearing headphones through which the words ‘line’ or ‘tree’ were transmitted. When the wearer heard ‘line’ but said ‘tree’ or vice versa he was obviously lying, and his partner’s task was to try and detect the lie. Then the two subjects switched roles.

As expected, participants were unable to detect their partners’ lies with any statistical significance. However, the electrical signals delivered by the electrodes attached to their face identified the lies at an unprecedented success rate of 73%.

Are You a Brow Liar or a Cheek Liar?

Prof. Levy: “Since this was an initial study, the lie itself was very simple. Usually when we lie in real life, we tell a longer tale which includes both deceptive and truthful components. In our study we had the advantage of knowing what the participants heard through the headsets, and therefore also knowing when they were lying. Thus, using advanced machine learning techniques, we trained our program to identify lies based on EMG (electromyography) signals coming from the electrodes. Applying this method, we achieved an accuracy of 73% – not perfect, but much better than any existing technology. Another interesting discovery was that people lie through different facial muscles: some lie with their cheek muscles and others with their eyebrows.”

The results can have dramatic implications in many spheres of our lives. In the future, the electrodes may become redundant, with video software trained to identify lies based on the actual movements of facial muscles.

Prof. Levy predicts: “In the bank, in police interrogations, at the airport, or in online job interviews, high-resolution cameras trained to identify movements of facial muscles will be able to tell truthful statements from lies. Right now, our team’s task is to complete the experimental stage, train our algorithms and do away with the electrodes. Once the technology has been perfected, we expect it to have numerous, highly diverse applications.”

New nanotech from TAU produces “healthy” electric current from the human body itself

Approach allows for the charging of cardiac pacemakers using only the heartbeat, eliminating the need for batteries

A new nanotechnology development from an international research team led by Tel Aviv University researchers will make it possible to generate electric currents and voltage within the human body itself through the activation of various organs using mechanical force. The development involves a new and very strong biological material, similar to collagen, which is non-toxic and causes no harm to the body’s tissues.

The researchers believe that this new nanotechnology has many potential applications in medicine, including harvesting clean energy to operate pacemakers and other devices implanted in the body through the body’s natural movements, eliminating the need for batteries and the surgery required to replace them.

The study was led by Professor Ehud Gazit of TAU’s Shmunis School of Biomedicine and Cancer Research at the George S. Wise Faculty of Life Sciences, the Department of Materials Science and Engineering at the Fleischman Faculty of Engineering and the Center for Nanoscience and Nanotechnology, along with his lab team, Dr. Santu Bera and Dr. Wei Ji.

Researchers from the Weizmann Institute and a number of research institutes in Ireland, China and Australia also took part in the study, which was published in Nature Communications.

“Collagen is the most prevalent protein in the human body, constituting about 30% of all of the proteins in our body,” Professor Gazit, who is also Founding Director of TAU’s Blavatnik Center for Drug Discovery, explains. “It is a biological material with a helical structure and a variety of important physical properties, such as mechanical strength and flexibility, which are useful in many applications. However, because the collagen molecule itself is large and complex, researchers have long been looking for a minimalistic, short and simple molecule that is based on collagen and exhibits similar properties.

“About a year and a half ago our group published a study in which we used nanotechnological means to engineer a new biological material that meets these requirements,” Professor Gazit continues. “It is a tripeptide — a very short molecule called Hyp-Phe-Phe consisting of only three amino acids — capable of a simple process of self-assembly of forming a collagen-like helical structure that is flexible and boasts a strength similar to that of the metal titanium.

“In the present study, we sought to examine whether the new material we developed bears piezoelectricity, another feature that characterizes collagen. Piezoelectricity is the ability of a material to generate electric currents and voltage as a result of the application of mechanical force, or vice versa, to create a mechanical force as the result of exposure to an electric field.”

The researchers created nanometric structures of the engineered material, and with the help of advanced nanotechnology tools applied mechanical pressure on them. The experiment revealed that the material does indeed produce electric currents and voltage as a result of the pressure.

Moreover, tiny structures of mere hundreds of nanometers demonstrated one of the highest levels of piezoelectric ability ever discovered, comparable or superior to that of the piezoelectric materials commonly found in today’s market, most of which contain lead and are unsuitable for medical applications.

According to the researchers, the discovery of piezoelectricity of this magnitude in a nanometric material is of great significance, as it demonstrates the ability of the engineered material to serve as a kind of tiny motor for very small devices. Next, the researchers plan to apply crystallography and computational quantum mechanical methods (density functional theory) in order to gain an in-depth understanding of the material’s piezoelectric behavior and thereby enable the accurate engineering of crystals for the building of biomedical devices.

“Most of the piezoelectric materials that we know of today are toxic lead-based materials, or polymers, meaning they are not environmentally and human body-friendly,” Professor Gazit says. “Our new material, however, is completely biological and suitable for uses within the body.

“For example, a device made from this material may replace a battery that supplies energy to implants like pacemakers, though it should be replaced from time to time. Body movements like heartbeats, jaw movements, bowel movements, or any other movement that occurs in the body on a regular basis will charge the device with electricity, which will continuously activate the implant.”

His current focus is on the development of medical devices, but Professor Gazit emphasizes that “environmentally friendly piezoelectric materials, such as the one we have developed, have tremendous potential in a wide range of areas because they produce green energy using mechanical force that is being used anyway. For example, a car driving down the street can turn on the streetlights. These materials may also replace lead-containing piezoelectric materials that are currently in widespread use, but that raise concerns about the leakage of toxic metal into the environment.”


Tok Corporate Centre, Level 1,
459 Toorak Road, Toorak VIC 3142
Phone: +61 3 9296 2065
Email: office@aftau.asn.au

New South Wales

P.O. Box 4044, Maroubra South,
NSW 2035
Phone: +61 418 465 556
Email: davidsolomon@aftau.org.au

Western Australia

P O Box 36, Claremont,
WA  6010
Phone: :+61 411 223 550
Email: clivedonner@thelinqgroup.com