Tag: Zoology

A House is Not a Home Without a Pet

TAU law students are helping elderly citizens and their pets move to senior homes.

Many senior citizens have to part with their beloved pets just when they need them the most: when they leave their homes and transition to live in public housing for the elderly. In many of these governmental institutions, pets are still not allowed – and when they are, the policy is not always implemented. This can cause a painful situation which may harm the mental and physical wellbeing of senior citizens, and affect the welfare of the animals (often senior as well) that find themselves homeless and separated from their loving caretakers.

We have some positive news: There are good people out there who are pro-actively seeking to protect the rights of pet caretakers, as well as the pets’.

Who? Students of The Buchmann Faculty of Law who work through the Clinic for Environmental Justice and the Protection of Animal Rights, an integral part of the The Coller-Menmon Animal Rights and Welfare Program, Israel’s leading and most comprehensive academic program on animal law, at the Faculty of Law. We do realize that’s a mouthful and warrants some further explanation…

Protecting Animals’ Rights

The Clinic for Environmental Justice has been handling a range of environmental issues since 2001. In 2017, it expanded its operations to include the protection of animals’ rights. Through their work at the Clinic, law students get to practice drafting applications, precedents and position papers, closely accompanied by top academics and clinical facilitators from Israel’s legal system. 

Dr. Orit Hirsch-Matsioulas researches human-animal relations. She is a post-doctoral fellow of The Coller-Menmon Animal Rights and Welfare Program and one of the founders of The Community for Human-Animal Studies Israel (HASI). Together with Adv. Amnon Keren, Program Coordinator and Clinical Instructor at the Clinic, she made the rights of the elderly and their pets one of the Clinic’s lead projects.

Both Granny and Kitty Benefit

The project was significantly accelerated when the Clinic decided to handle the appeal of a group of senior citizens who were told they were not allowed to bring their pets to their public housing apartments. “The rights of elderly people were violated,” says Dr. Hirsch-Matsioulas. “Some of them decided against moving because they did not want to part with their pets. Noah, the umbrella organization for Israel’s animal protection associations, contacted us, and we got in touch with the Ministry of Construction and Housing to change the existing policy.”

Dr. Hirsch-Matsioulas presented the Ministry with academic studies on emotional, cognitive and health-related benefits of pet relationships for senior citizens. Moreover, she brought a new element to the attention of the Ministry officials, namely the effect of the relationship on the animals.

“We built a multidisciplinary team of people from the fields of law, social sciences, social work, gerontology (i.e. the multidisciplinary study of aging, including physical aspects as well as mental, social and societal implications) and civil society organizations, and we’re working together with the Ministry of Construction and Housing,” explains Dr. Hirsch-Matsioulas. 

A temporary policy was established, allowing for the entry and keeping of pets in all public senior homes, called בתי גיל הזהב, under the responsibility of Israel’s Ministry of Construction and Housing. It was widely agreed that this temporary right should eventually become permanent, however this is a lengthy process. 

 

Kitty and Milo also have rights. Photo: Vika Minkowitz Mualem

Focusing on Solutions

While we’re excited to share that this undertaking is, in fact, a global precedent, the process of implementing the policy has not been a smooth ride. Due to Covid restrictions, the team has not been able to enter the senior housing buildings to teach the staff about the new guidelines for successful implementation. “The doors have been opened. Now, we must focus on ensuring the optimal execution,” says Dr. Hirsch-Matsioulas. 

Dr. Hirsch-Matsioulas is compiling a report with all the issues that do or may arise. She will then proceed to examine the appropriate solutions for every listed problem, through consultation with relevant professionals. The aim is to come up with suitable solutions for the preservation of the elderly’s right to good health and a dignified life, as well as the preservation of the rights of the animals. Once completed, she will present the list to policy makers to advance the legislation, with the aim that the Ministry of Construction and Housing can adopt the law on a permanent basis. 

The arrived upon solutions will be offered, and hopefully adopted, by additional countries as well.

 

Emotional, cognitive and health benefits enjoyed by both parties. Photo: Vika Minkowitz Mualem

Across Generations and Species

“We intend to visit senior homes, observe and learn, and then to provide cultural programs with positive and educational messages on how to co-exist in a community with multiple living species,” offers Dr. Hirsch-Matsioulas.

“Education is central for promoting change, and we would like to cultivate a new atmosphere on ground through a series of lectures. Children and youth are oftentimes leading agents of change, and we may end up including the grandchildren in this effort.” 

“Beyond our firm conviction that the elderly shouldn’t have to part with their pets, that are to them like family members for all intents and purposes, the Clinic also makes sure that the animals’ interests are represented. Forced removal of an animal from a warm and loving home can cause him or her great suffering, especially in old age,” adds Adv. Keren.

“In recent years, there’s been a growing recognition in Israel of animal rights and their welfare, as key considerations in decision-making pertaining to them. We will continue to develop this trend, whereby the animal is regarded as a subject with his or her own rights, each animal representing a world of his or her own and worthy of protection in and by him- or herself.”

 

Dr. Orit Hirsch-Matsioulas and her good friend, Shenef. 

Featured image: Family and flatmates. Photo: Noah Toledano

Where Have All the Birds Gone?

Humans Behind Extinction of Hundreds of Bird Species Over the Last 50,000 Years.

A new study from Tel Aviv University and the Weizmann Institute revealed that over the last 20,000-50,000 years, birds have undergone a major extinction event, inflicted chiefly by humans, which caused the disappearance of about 10%-20% of all avian species. The vast majority of the extinct species shared several features: they were large, they lived on islands, and many of them were flightless.

The main cause for extinction of species by humans today has evolved from being hunting to the destruction of the animals’ natural habitats, but the researchers hope their findings will serve as warning signals regarding bird species currently threatened with extinction.

The study was led by Prof. Shai Meiri of the School of Zoology at The George S. Wise Faculty of Life Sciences and the Steinhardt Museum of Natural History at Tel Aviv University, and Amir Fromm of the Weizmann Institute of Science. The paper was published in the Journal of Biogeography.

Human-Inflicted Extinction

Prof. Meiri: “We conducted a comprehensive review of scientific literature, and for the first time collected quantitative data on the numbers and traits of extinct species of birds worldwide. Those that became extinct in the last 300 years or so are relatively well known, while earlier species are known to science from remains found in archaeological and paleontological sites worldwide. Altogether we were able to list 469 avian species that became extinct over the last 50,000 years, but we believe that the real number is much higher.”

The researchers believe that the vast extinction was caused primarily by humans who hunted the birds for food, or by animals brought to islands by humans – that fed on the birds and/or their eggs. This assumption is based on the fact that the greater part of bird remains was found on human sites, apparently belonging to birds consumed by the inhabitants, and in most cases the extinctions occurred shortly after the arrival of humans.

Coveted Targets for Hunters

Most extinct species shared three major features:

  1. About 90% of them lived on islands – When humans arrived on the island, the birds were hunted by them, or fell victim to other animals introduced by humans, such as pigs, rats, monkeys, and cats.
  2. Most extinct bird species were large, some very large – The body mass of the extinct species was found to be up to 10 times as large as that of surviving species. The larger birds provided humans with a great quantity of food, thus they were a preferred target for hunters. Previous studies have found a similar phenomenon among mammals and reptiles, especially lizards and turtles that lived on islands: the larger ones were hunted by humans and became extinct.
  3. A large portion of the extinct bird species were flightless, and often unable to escape their pursuers – The study found that the number of flightless bird species that became extinct is double the number of flightless species still existing today; all in all, 68% of the flightless bird species known to science became extinct. One of the better-known examples is the moa bird in New Zealand: 11 species of moa became extinct within 300 hundred years, due to hunting by humans

Prof. Meiri: “Our study indicates that before the major extinction event of the past millennia, many more large, even giant, as well as flightless avian lived on our globe, and the diversity of birds living on islands was much greater than today. We hope that our findings can serve as warning signals regarding bird species currently threatened with extinction, and it is therefore important to check whether they have similar features. It must be noted, however, that conditions have changed considerably, and today the main cause for extinction of species by humans is not hunting but rather the destruction of natural habitats.”

Featured image: Bird species at the Zoological Garden

Tel Aviv Bats Have More Fun

More adventurous than their rural counterparts, fruit bats in Tel Aviv enjoy what the city has to offer.

Urbanization processes tend to lead animals to leave the city, but some animals are able to thrive in an urban domain. A new Tel Aviv University study found that fruit bats, just like humans, are able to adapt to a variety of environments, including the city and the countryside.

Prof. Yossi Yovel: “How animals cope with urbanization is one of the most central and important questions in ecological research today. Understanding the ways in which animals adapt to urban areas can help us in our conservation efforts. The urban environment is characterized by much fragmentation, and we currently have little understanding of how animals, especially small animals, like the bats, move and fly in such areas.”

The City Bat and the Country Bat

The urban environment is fundamentally different from the rural environment in terms of the diversity and accessibility of food. Although the city has a larger variety of trees per area, there are many challenges that bats have to face, such as buildings and humans. In rural areas, on the other hand, most of the trees are concentrated in orchards without barriers, but have less diversity – the trees are mostly of one type.

Because of the environmental differences between the city and the country with regards to the distribution and variety of fruit trees, the nature of the bats’ movement when foraging in these areas differs as well. In this new study, the researchers compared the nature of the movement of rural bats and city bats as they foraged for food, using tiny GPS devices to track the bats to see if the way they moved while searching for food was affected by their living environment, or the environment in which they were foraging.

The study was led by research student Katya Egert-Berg, under the guidance of aforementioned Prof. Yossi Yovel, head of Tel Aviv University’s Sagol School of Neuroscience and a faculty member of the School of Zoology in The George S. Wise Faculty of Life Sciences and The Steinhardt Museum of Natural History, as well as a recipient of the 2021 Kadar Family Award for Outstanding Research. The study was published in the journal BMC Biology.

Enjoying their Meals in the Big City

The researchers found that the fruit bats hunting for food in the city are much more exploratory, enjoy the abundance of the urban environment, visit a variety of fruit trees every night, and feed from a wide a variety of trees. In contrast, the rural bats focus on only one or two fruit trees each night. Moreover, the researchers found that among the rural bats who rest in the countryside, there were many who left their rural homes every night in search of food in the city, and then flew back to the country after their meal. During their stay in the city, such bats share the same flight patterns as those of the bats that live in the city around the clock.

The study’s findings led the researchers to assess that even bats that live in rural environments their entire lives will be able to orient themselves in an urban, industrialized environment. They explain that there are animal species that are flexible – for them, the ability to adapt to a new and unfamiliar environment such as an urban settlement is an acquired skill. Such species, of which the fruit bats are an example, will in many cases be able to adapt to life in urban areas.

Featured image: A Tel Aviv bat in action. Photo: S. Greif

Bats ‘Social Distance’ Too

TAU researchers find that bats also self-isolate when sick, helping prevent outbreaks of epidemics.

The Covid-19 pandemic has introduced us to expressions such as ‘lockdown’, ‘isolation’ and ‘social distancing’, which became part of social conduct all over the world. And while bats have been widely assumed to be source of coronavirus, apparently they too maintain social distancing, which might help prevent the spread of contagious diseases. Researchers from Tel Aviv University demonstrate that sick bats, just like us humans when we are sick, prefer to stay away from their communities. This is probably a means for recovery and possibly also a measure for protecting others. The study was conducted by postdoctoral researcher Dr. Kelsey Moreno and PhD candidate Maya Weinberg at the laboratory of Prof. Yossi Yovel, Head of the Sagol School of Neuroscience and a researcher at the School of Zoology at the George S. wise Faculty of Life Sciences. The study has been published in Annals of the New York Academy of Science.

“If we protect them, they will also protect us”

The study monitored two colonies of Egyptian fruit bats – one living in an enclosure and the other in its natural environment. To examine the behavior of bats when they get sick, the researchers injected several bats in each group with a bacteria-like protein, thereby stimulating their immune response without generating any real danger to the bats. Tests revealed symptoms such as a high fever, fatigue and weight loss, and the ‘ill’ bats’ behavior was tracked with GPS. The researchers discovered that the ‘sick’ bats chose to keep away from the colony. In the first group, they left the bat cluster of their own accord and kept their distance. In the second group the ‘ill’ bats likewise moved away from the other bats in the colony, and also stayed in the colony and did not go out in search of food for two successive nights. Research student Maya Weinberg explains that this social distancing behavior is probably caused by the need to conserve energy – by avoiding the energy-consuming social interactions in the group. Weinberg emphasizes, however, that this behavior can also protect the group and prevent the pathogen from spreading within the colony. Moreover, the fact that sick bats don’t leave the cave, prevents the disease from spreading to other colonies. “The bats’ choice to stay away from the group is highly unusual for these animals. Normally these bats are extremely social creatures, living in caves in very crowded conditions,” says Weinberg. “In fact, the ‘sick’ bats’ behavior is very reminiscent of our own during recovery from an illness. Just as we prefer to stay home quietly under the blanket when we are ill, sick bats, living in very crowded caves, also seek solitude and peace as they recuperate.” Prof. Yovel adds that the study’s findings suggest that the likelihood of bats passing pathogens to humans under regular conditions is very low, because sick bats tend to isolate themselves and stay in the cave. “We observed that during illness bats choose to stay away from the colony and don’t leave the cave, and thus avoid mixing with other bats. This suggests that in order to encounter a sick bat, people must actually invade the bats’ natural environment or eliminate their habitats. In other words, if we protect them, they will also protect us.”

Time Flies and So Do Bats

Bats map the world in units of time, an innate ability.

Bats know the speed of sound from birth. Unlike humans, who map the world in units of distance, bats map the world in units of time. This means that the bat actually perceives an insect as being at a distance of nine milliseconds, and not one and a half meters, as previously thought. TAU researchers proved this, by raising bats from the time of their birth in a helium-enriched environment in which the speed of sound is higher than normal. The study was published in PNAS.

Born this way

In order to determine where things are in a space, bats use sonar – they produce sound waves that hit objects and are reflected back to the bat. Bats can estimate the position of the object based on the time that elapses between the moment the sound wave is produced and the moment it is returned to the bat. This calculation depends on the speed of sound, which can vary in different environmental conditions, such as air composition or temperature. For example, there could be a difference of almost 10% between the speed of sound at the height of the summer, when the air is hot and the sound waves spread faster, and the winter season. Since the discovery of sonar in bats 80 years ago, researchers have been trying to figure out whether bats acquire the ability to measure the speed of sound over the course of their lifetime or are born with this innate, constant sense. Now, researchers led by Prof. Yossi Yovel, head of the Sagol School of Neuroscience and a faculty member of the School of Zoology in The George S. Wise Faculty of Life Sciences and his former doctoral student Dr. Eran Amichai have succeeded in answering this question. The researchers conducted an experiment in which they were able to manipulate the speed of sound. They enriched the air composition with helium to increase the speed of sound, and under these conditions raised bat pups from the time of their birth, as well as adult bats. Neither the adult bats nor the bat pups were able to adjust to the new speed of sound and consistently landed in front of the target, indicating that they perceived the target as being closer – that is, they did not adjust their behavior to the higher speed of sound. Because this occurred both in the adult bats that had learned to fly in normal environmental conditions and in the pups that learned to fly in an environment with a higher-than-normal speed of sound, the researchers concluded that the rate of the speed of sound in bats is innate – they have a constant sense of it. “Because bats need to learn to fly within a short time of their birth,” explains Prof. Yovel, “we hypothesize that an evolutionary ‘choice’ was made to be born with this knowledge in order to save time during the sensitive development period.”

With Time as Their Compass

Another interesting conclusion of the study is that bats do not actually calculate the distance to the target according to the speed of sound. Because they do not adjust the speed of sound encoded in their brains, it seems that they also do not translate the time it takes for the sound waves to return into units of distance. Therefore, their spatial perception is actually based on measurements of time and not distance. Prof. Yossi Yovel says, “What most excited me about this study is that we were able to answer a very basic question – we found that in fact bats do not measure distance, but rather time, to orient themselves in space. This may sound like a semantic difference, but I think that it means that their spatial perception is fundamentally different than that of humans and other visual creatures, at least when they rely on sonar. It’s fascinating to see how diverse evolution is in the brain-computing strategies it produces.”

When One Becomes Three

Extraordinary discovery in the Gulf of Eilat: Animal able to regenerate all its organs fully after dissection.

Researchers from Tel Aviv University have discovered a species of ascidian, a marine animal commonly found in the Gulf of Eilat, is taking the concept of self-creation to a whole different level: it is capable of regenerating all of its organs fully – even if it is dissected into three fragments. The study was led by Prof. Noa Shenkar, Prof. Dorothee Huchon-Pupko, and Tal Gordon of Tel Aviv University’s School of Zoology at The George S. Wise Faculty of Life Sciences and The Steinhardt Museum of Natural History. The findings of this surprising discovery were published in the leading journal Frontiers in Cell and Developmental Biology.

Regenerates all its Organs

Prof. Noa Shenkar: “Since the dawn of humanity, humans have been fascinated by the ability to regenerate damaged or missing organs. Regeneration is a wonderful ability that we have, to a very limited extent, and we would like to understand how it works in order to try and apply it within our own bodies. Anyone snorkeling in the Gulf of Eilat can find this intriguing ascidian, who may be able to help us comprehend processes of tissue renewal that can help the human race.” “It is an astounding discovery, as this is an animal that belongs to the Phylum Chordata – animals with a dorsal cord – which also includes us humans,” continues Prof. Shenkar. “The ability to regenerate organs is common in the animal kingdom, and even among chordates you can find animals that regenerate organs, like the gecko who is able to grow a new tail. But not entire body systems. Here we found a chordate that can regenerate all of its organs even if it is separated into three pieces, with each piece knowing exactly how to regain functioning of all its missing body systems within a short period of time.” There are hundreds of species of ascidians, and they are found in all of the world’s oceans and seas. Anyone who has ever opened their eyes underwater has seen ascidians without knowing it, as they often camouflage themselves as lumps on rocks and are therefore difficult to discern. The animal that is the subject of this new study is an ascidian from the species Polycarpa mytiligera, which is very common in the coral reefs of Eilat. Anyone snorkeling in the Gulf of Eilat can find this intriguing ascidian.

Completing the Missing Parts

“By all accounts, the ascidian is a simple organism, with two openings in its body: an entry and an exit,” says Tal Gordon, whose doctoral dissertation included this new research. “Inside the body there is a central organ that resembles a pasta strainer. The ascidian sucks in water through the body’s entry point, the strainer filters the food particles that remain in the body, and the clean water exits through the exit point. Among invertebrates, they are considered to be the closest to humans from an evolutionary point of view.” Ascidians are famous for their regenerative ability, but until now these abilities have been identified mainly in asexual reproduction. Never before has such a high regenerative capacity been detected in a chordate animal that reproduces only by sexual reproduction. “There are species of ascidians that perform simple regeneration in order to reproduce,” Gordon says. “These are species with a colonial lifestyle, with many identical individuals connected to one another. They replicate themselves in order to grow. In contrast, the ascidian from Eilat, Polycarpa mytiligera, is an organism with a solitary lifestyle, without the capacity for asexual reproduction, similar to humans. In previous studies we showed that this species is able to regenerate its digestive system and its points of ​​entrance and exit within a few days. But then we wanted to see if it is capable of renewing all of its body systems. We took a few individual ascidians from Eilat and dissected them into two parts, which were able to replenish the removed sections without any problem. In a subsequent experiment, we dissected several dozen ascidians into three fragments, leaving a part of the body without a nerve center, heart, and part of the digestive system. And contrary to our expectations, not only did each part survive the dissection on its own, all of the organs were regenerated in each of the three sections. Instead of one ascidian, there were now three. This is very astonishing. Never before has such regenerative capacity been discovered among a solitary species that reproduces sexually, anywhere in the world.”

Fireflies’ Protective ‘Musical Armor’ Against Bats

Trailblazing TAU study reveals that fireflies produce strong ultrasonic sounds that may potentially work to deter bats.

They sure know how to put on a show at nights – fireflies are striking with their glow-in-the-dark feature. But have you ever stopped and wondered how these glowing insects defend themselves against predators? A trailblazing TAU study reveals that fireflies produce strong ultrasonic sounds that may potentially work to deter bats, serving as a ‘musical armor’ against these predators. The discovery of such a ‘musical battle’ between fireflies and bats may pave the way for further research, and the discovery of a new defense mechanism developed by animals against their predators. According to the study, the fireflies produce strong ultrasonic sounds soundwaves that the human ear, and more importantly the fireflies themselves, cannot detect. The researchers hypothesize that these sounds are, in fact, meant for the ears of the bats, keeping them away from the poisonous fireflies, and thereby serving as a kind of ‘musical armor’. The study was led by Prof. Yossi Yovel, Head of the Sagol School of Neuroscience, and a member of the School of Mechanical Engineering and the School of Zoology at the George S. Wise Faculty of Life Sciences. It was conducted in collaboration with the Vietnam Academy of Science and Technology (VAST) and has been published in iScience. Fireflies are known for their unique, all-year glow, which is effective as a mating signal. Their bodies contain poison, and so the light flashes probably also serve as an aposematic signal, a warning to potential predators. At the same time, this signal is also the firefly’s weakness, as it makes it an easy target for predators. Bats are among the fireflies’ most prevalent potential predators, and some bats have poor vision, rendering the flashing signal ineffective. This prompted the researchers to check whether fireflies were equipped with an additional layer of protection against bats.

Accidental Discovery of ‘Musical Battle’

The idea for this study came up accidentally, during a study that tracked bats’ echolocation. Ksenia Krivoruchku, the PhD student who led the study recalls, “We were wandering around a tropical forest with microphones capable of recording bats’ high frequencies, when suddenly, we detected unfamiliar sounds at similar frequencies, coming from fireflies. “In-depth research, using high-speed video, revealed that the fireflies produce the sound by moving their wings, and that the fireflies themselves are incapable of hearing this frequency. Consequently, we hypothesized that the sound is not intended for internal communication within the species.” Following this discovery, the team at Prof. Yovel’s laboratory examined three different species of fireflies that are common in Vietnam (Curtos, Luciola and Sclerotia), in addition to one Israeli species (Lampyroidea). It was found that they all produce these unique ultrasonic sounds, and that they are all unable hear them. Prof. Yovel says that it is premature to conclude that fireflies have developed a special defense mechanism specifically targeting bats, there are indications that this may be the case. The fact that the fireflies themselves are unable to hear the sound, while bats can both hear it and use it to detect the fireflies, makes it more likely that these ultrasonic sounds serve as a warning signal. The discovery of ultrasonic sounds in fireflies is in itself an important contribution to the study of predator-prey relations. The idea of warning signals that the sender itself cannot detect is known from the world of plants, but is quite rare among animals. Krivoruochku says “Our discovery of the ‘musical battle’ between fireflies and bats may pave the way for further research, and possibly the discovery of a new defense mechanism developed by animals against potential predators.”

An Underwater Salute to Grandma Vera

Marine biologist names new species of sponge after Holocaust survivor grandmother, turning 95.

There are many ways to make a beloved grandmother feel special on her birthday, and Tal Idan, a doctoral student in Prof. Micha Ilan’s sponge lab at TAU’s School of Zoology, did something quite unconventional: She scientifically named a new sponge that she herself discovered, after her grandmother, Vera. And as Israel is observing the national Holocaust Remembrance Day (Yom HaShoa), Tal found her own way of eternalizing her grandmother’s identity as a courageous Holocaust survivor.

Finding a Needle in a Haystack

The process leading up to the naming of a new species of animals is complex and lengthy, and the naming is considered the icing on the cake. Tal Idan researches sponges on the Israeli coast of the Mediterranean. Detecting and identifying new species for science is part of her research. “One of the benefits of working in deep waters and in new environments, is that there will always be new species – simply because these places have not yet been reached by anyone,” she explains. “There are a number of sponges that we have not yet been able to identify. These three, however, we discovered back in 2018, and since then we have been working to identify them.” Vera the Sponge Tal explains that this is a lengthy and intricate part. “Animal characterization is usually done by examining the genetic differences in the animals’ DNA. This won’t work with sponges, that have a really good DNA-repairing ability and their differences are not that big. One literally needs to characterize the structure of their body: “The skeleton of the sponges consists of skeletal needles in very beautiful shapes. You have to check the structure of the needles, measure and compare these to those of the other species that exist in the same genus. It took several years to produce good enough characterizations.”

Grandma Vera’s Love for the Sea

Like Tal, Vera loves the sea very much. Throughout many years, Vera and her late husband, Otto, used to swim in the sea in all weathers. Otto was Vera’s childhood sweetheart from the Czech Republic, who survived the Holocaust with her and immigrated with her to Israel. Even after his death and up until very recently, Vera would continue to go to the sea alone.   Tal and Vera, photographed during a trip in celebration of Vera’s 90th birthday

So far, Tal has successfully defined three new species for science. After consulting with her research colleagues, they decided that one of the sponges would be called Hemiasterella verai , named after grandma Vera. Tal explains that when a new species is named, it is common practice to include the origin of the name. Thus she was able to memorialize not only her dear grandmother’s name, but also the fact that she courageously survived the Holocaust. Tal says that it was important for her to do this for Vera while she is alive, and also to include this important fact.

Today, grandma Vera has three sons, seven grandchildren and 11 great-grandchildren, who all plan to attend her upcoming 95th birthday celebration. She always says they are her biggest victory over the Nazis.

Featured image: Tal Idan in the depths of the Mediterranean

Struggling in a Toxic Workplace?

TAU researchers hope to save farmers from snakebites in their fields.

Did you know that about 1.8 million instances of snakebite envenoming occur around the world annually, killing about 94,000 people? Snakebite envenoming is a potentially life-threatening disease that typically results from the injection of a mixture of different toxins (“venom”) following the bite of a venomous snake. In some areas, snakebites are considered a major cause of death, especially among farmers who encounter snakes in their fields. The World Health Organization has even launched a strategic plan to reduce snakebites by 50% by 2030. TAU researchers, as part of an international research group, created an innovative simulation model for predicting snakebites, based on an improved understanding of interactions between farmers and snakes.

Mapping Snakebites

The purpose of the model is to determine the probability of a snakebites occurring in certain places (i.e. in rice fields vs. tea fields) at various times (hours of the day and months of the year). The study is founded upon extensive research and data from Sri Lanka, where about 30,000 envenoming snakebites kill roughly 400 people every year. It focused on 6 types of snakes – Cobra, Russell’s viper, Saw-scaled viper, Hump-nosed viper, Common krait and Ceylon krait – and the farmers who grow the 3 most common crops in the area: rice, tea and rubber. The model predicts that the bites of Russell’s viper, one of the world’s most dangerous snakes, peak in rice fields during February and August, while the less lethal hump-nosed viper prefers rubber plantations in April and May. It was also found that in the southeastern part of the studied region, the largest number of snakebites are inflicted by Russell’s viper, while in other parts of the region snakebites of the hump-nosed viper are the most common.

Interdisciplinary Model

Eyal Goldstein of the TAU School of Zoology explains: “We built a first-of-its-kind interdisciplinary model, which includes the behavior patterns of both sides – snakes and humans, identifying risk factors at various times and places and warning against them. The model can for instance differentiate between low-risk and high-risk areas – a difference which can be manifested in double the number of snakebites per 100,000 people.” Eyal Goldstein Dr. Kris Murray of Imperial College London and the School of Hygiene and Tropical Medicine in London explains that “Snakes and humans both go about their business at different times of the day, during different seasons and in different types of habitats. Our model factors in all these elements to predict encounters between humans and snakes in areas where farmers are working. We consider the degree of aggressiveness of different snake species when we calculate how likely an encounter is to result in a bite.” Dr. Takuya Iwamura (currently at Oregon State University) emphasizes that “Our approach is to mathematically analyze interactions between snakes and humans, with an emphasis on the ecological perspective. This is a completely new approach to understanding the mechanism behind snakebites. Unlike most studies, which have so far focused mainly on social and economic risk factors, we chose to focus on the ecological aspects – such as snakes’ movements and habitats, the impact of climate and rainfall, and the respective behaviors of farmers and snakes – as a key to predicting potential encounters.”

Scalable Model

About 1.8 million envenoming snakebites occur around the world annually, killing about 94,000 people. In tropical areas, especially in Southeast Asia and Sub-Saharan Africa, snakebites are considered a major cause of death, especially among farmers who encounter snakes in their fields. In response, the World Health Organization has launched a strategic plan to reduce snakebites by 50% by 2030. An important basis for attaining this goal is expanding relevant scientific research. Verified against existing data in Sri Lanka, the model was proved very accurate in predicting snakebite patterns in different areas and different seasons, as well as the relative contribution of various types of snakes to the overall picture as documented in hospital data. The researchers plan to implement the model in places that do not yet keep accurate snakebite data. They will also use it to predict future changes resulting from climate change – such as increased rainfall leading to greater snake activity, as well as changes in land use and habitats available to snakes. Dr. Iwamura concludes: “Our model can help focus the efforts of snakebite reduction policies, and serve as a tool for warning, raising awareness and saving human lives. We regard this study as a first stage in a broader project, and plan to develop more complex models of encounters between humans and wildlife, to support both public health and nature preservation policies in the real world.”   Farmer and snake – better off apart The study was led by Dr. Takuya Iwamura (currently at Oregon State University), Eyal Goldstein of the TAU School of Zoology, and Dr. Kris Murray of Imperial College London and the School of Hygiene and Tropical Medicine in London. Other participants included researchers from the Liverpool School of Tropical Medicine, Lancaster University and the University of Kelaniya, Sri Lanka. The paper was published in February 2021 in PLOS Neglected Tropical Diseases.

Robot “Hears” through the Ear of a Locust

TAU researchers open the door to sensory integrations between robots and insects

 

 

Tel Aviv University researchers have opened the door to sensory integrations between robots and insects: for the first time, the ear of a dead locust was connected to a robot that receives the ear’s electrical signals and responds accordingly. The result is extraordinary: When the researchers clap once, the locust’s ear hears the sound and the robot moves forward; when the researchers clap twice, the robot moves backwards.

In general, biological systems have a huge advantage over technological systems – both in terms of sensitivity and in terms of energy consumption. This initiative of Tel Aviv University researchers may in the future make much more cumbersome and expensive developments in the field of robotics redundant.

An Interdisciplinary Effort

The interdisciplinary study was led by Idan Fishel, a joint master student under the joint supervision of Dr. Ben M. Maoz of The Iby and Aladar Fleischman Faculty of Engineering and the Sagol School of Neuroscience, Prof. Yossi Yovel and Prof. Amir Ayali, experts from the School of Zoology and the Sagol School of Neuroscience together with Dr. Anton Sheinin, Yoni Amit, and Neta Shavil. The results of the study were published in the prestigious journal Sensors.

The researchers explain that at the beginning of the study, they sought to examine how the advantages of biological systems could be integrated into technological systems, and how the sensory organs of a dead locust could be used as sensors for a robot. “We chose the sense of hearing, because it can be easily compared to existing technologies, in contrast to the sense of smell, for example, where the challenge is much greater,” says Dr. Maoz. “Our task was to replace the robot’s electronic microphone with a dead insect’s ear, use the ear’s ability to detect the electrical signals from the environment, in this case vibrations in the air, and, using a special chip, convert the insect input to that of the robot.”

To carry out this unique and unconventional task, the interdisciplinary team (Maoz, Yovel and Ayali) first built a robot capable of responding to signals it receives from the environment. Subsequently, the researchers were able to isolate and characterize the dead locust ear and keep it functional long enough to successfully connect it to the robot. In the final stage, the team succeeded in finding a way to pick up the signals received by the locust’s ear in a way that could be received and responded to by the robot.

“Prof. Ayali’s laboratory has extensive experience working with locusts, and they have developed the skills to isolate and characterize the ear,” explains Dr. Maoz. “Prof. Yovel’s laboratory built the robot and developed code that enables the robot to respond to electrical auditory signals. And my laboratory has developed a special device – Ear-on-a-Chip – that allows the ear to be kept alive throughout the experiment by supplying oxygen and food to the organ, while allowing the electrical signals to be taken out of the locust’s ear and amplified and transmitted to the robot.

Biological systems expend negligible energy compared to electronic systems. They are miniature, and therefore also extremely economical and efficient. For the sake of comparison, a laptop consumes about 100 watts per hour, while the human brain consumes about 20 watts a day.

In addition, “Nature is much more advanced than we are, so we should use it,” urges Dr. Maoz. “The principle we have demonstrated can be used and applied to other senses, such as smell, sight and touch. For example, some animals have amazing abilities to detect explosives or drugs; the creation of a robot with a biological nose could help us preserve human life and identify criminals in a way that is not possible today. Some animals know how to detect diseases. Others can sense earthquakes. The sky is the limit.”

Victoria

Tok Corporate Centre, Level 1,
459 Toorak Road, Toorak VIC 3142
Phone: +61 3 9296 2065
Email: office@aftau.asn.au

New South Wales

P.O. Box 4044, Maroubra South,
NSW 2035
Phone: +61 418 465 556
Email: davidsolomon@aftau.org.au

Western Australia

P O Box 36, Claremont,
WA  6010
Phone: :+61 411 223 550
Email: clivedonner@thelinqgroup.com