TAU Scientist Awarded U.S. Patent for Novel Coronavirus Vaccine Design

Written on |

The patent, approved in March, covers a vaccine that targets the most vulnerable point in a coronavirus’s structure, through which it penetrates human cells

Researchers worldwide are racing at breakneck speed to develop potential vaccines and drugs to fight the novel coronavirus, SARS-Cov-2. Now, the United States Patent and Trademark Office (USPTO) has granted a patent to Tel Aviv University’s Prof. Jonathan Gershoni of the School of Molecular Cell Biology and Biotechnology at TAU’s George S. Wise Faculty of Life Sciences for his innovative vaccine design for the corona family of viruses.

The vaccine targets the novel coronavirus’s Achilles’ heel, its Receptor Binding Motif (RBM), a critical structure that enables the virus to bind to and infect a target cell.

According to Prof. Gershoni, the vaccine would reconstruct the coronavirus’s RBM, a tiny feature of its “spike” protein. Though the virus uses many different proteins to replicate and invade cells, the “spike” protein is the major surface protein that it uses to bind to a receptor — another protein that acts like a doorway into a human cell. After the spike protein binds to the human cell receptor, the viral membrane fuses with the human cell membrane, allowing the genome of the virus to enter human cells and begin infection.

“We have been working on coronaviruses for the last 15 years, developing a method of reconstructing and reconstituting the RBM feature of the spike protein in SARS CoV and subsequently in MERS CoV,” explains Prof. Gershoni. “The moment the genome of the new virus was published in early January 2020, we began the process of reconstituting the RBM of SARS CoV2, the virus that causes COVID-19, and expect to have a reconstituted RBM of the new virus soon. This will be the basis for a new vaccine, which could be ready for use within a year to a year and a half.”

The spike protein is quite large, containing about 1,200 amino acids. Some researchers have limited their research to a region of the spike known as the receptor binding domain (RBD) that comprises some 200 amino acids. However, the problem is that these relatively large areas have a variety of targets, and the immune system produces antibodies for all of them indiscriminately – reducing the effectiveness of a potential vaccine.

The RBM, a highly complex three dimensional structure, is only 50 amino acids long. Functionally reconstituting such a structure would be very challenging, but it would be an extremely effective basis of a vaccine, says Prof. Gershoni.

“The smaller the target and the focus of the attack, the greater the effectiveness of the vaccine,” he adds. “The virus takes far-reaching measures to hide its RBM from the human immune system, but the best way to ‘win the war’ is to develop a vaccine that specifically targets the virus’s RBM.”

Prof. Gershoni’s team has completed their initial steps toward reconstituting the new SARS CoV2’s RBM. The reconstitution of the new SARS CoV2’s RBM and its use as a basis for a new vaccine is covered by an additional pending patent application, filed by Ramot, TAU’s technology transfer arm, to the USPTO.

“Now that we have received serum samples we should be able to isolate RBM-based vaccine candidates in the next month or two,” concludes Prof. Gershoni. “The discovery and production of a functional RBM for the new coronavirus is fundamental and critical for the production of the vaccine we propose.

“Our successful isolation and reconstitution of such a functional RBM will allow the industry to incorporate it into a vaccine, which will be produced by a pharmaceutical company. Development of such an RBM-based vaccine should take months and then would need to be tested in Phase 1, 2 and 3 clinical trials which would then take up to a year.”

Related posts

TAU Researchers Invent Healthy Weapon Against Covid

15 April 2022

As Pandemic Persists, TAU Forges Ahead with COVID-19 Research on All Fronts

30 December 2021

Seaweed – A Promising Defense Against Covid-19

16 December 2021

TAU Experts on Omicron: “Don’t Panic”

7 December 2021

TAU Researchers Identify COVID Proteins that Cause Strokes and Heart Attacks

8 November 2021

From Law and Education to Nursing

3 November 2021

COVID-19 Immunity Varies Among Genders and Age Groups

25 July 2021

New study found differences between women and men in the level of COVID-19 antibodies

16 July 2021

How Will We Brave the Post-COVID Era?

1 June 2021

British Variant 45% More Contagious than Original Virus

29 April 2021

COVID-19 Vaccinations at TAU

25 March 2021

Covid-19 Vaccination of Nursing Mothers May Protect Babies

25 March 2021

Academic First Responders

14 January 2021

TAU Study Proves that Light Can Kill Coronavirus

15 December 2020

COVID-19 Takes TAU’s Legal Clinics into High Gear

7 December 2020

Study: Women Suffer More from COVID-related Orofacial Pain

13 November 2020

Victoria

Tok Corporate Centre, Level 1,
459 Toorak Road, Toorak VIC 3142
Phone: +61 3 9296 2065
Email: office@aftau.asn.au

New South Wales

P.O. Box 4044, Maroubra South,
NSW 2035
Phone: +61 418 465 556
Email: davidsolomon@aftau.org.au

Western Australia

P O Box 36, Claremont,
WA  6010
Phone: :+61 411 223 550
Email: clivedonner@thelinqgroup.com