Skip to main content

Will Existing Drugs Stop Cancer’s Bone Spread?

Written on |

Existing Meds May Prevent Bone Spread in Breast Cancer Patients

Researchers at TAU developed a new therapeutic strategy based on existing medications to inhibit bone metastasis in breast cancer patients. Using both an animal model and tissue samples from patients in Israel and the US, they demonstrated that a combination of drugs already available on the market can hinder bone metastasis and improve survival. Based on their findings, the researchers predict that in the future, the treatment can apply to human patients with breast cancer, as well as other types of cancer.

The groundbreaking study was led by Prof. Neta Erez and Dr. Lea Monteran at Prof. Erez’s Laboratory for Tumor Biology at the Pathology Department, Faculty of Medical and Health Sciences, Tel Aviv University. The paper was published in Cancer Discovery. The researchers explain that over 75% of patients with metastatic breast cancer suffer from bone metastases, which destroy bone tissues, causing fractures and a great deal of pain. Moreover, with today’s technologies such as MRI or CT imaging, diagnosis of bone metastasis occurs, in most cases, when the disease cannot be cured.  In this study, the researchers looked for a novel way to inhibit the progression of bone metastasis. 

Cancer Cell Sabotage

Prof. Erez: “A tumor is more than a collection of cancer cells. Just like healthy tissues, a tumor is a whole ecosystem consisting of reciprocal interactions between different cell types, including cells of the immune system, connective tissues, blood vessels, etc. Moreover, cancer cells often ‘corrupt’ normal cells, causing them to ‘collaborate’ with the tumor and support the growth of cancer cells. Blocking the communication channels between cancer cells and healthy cells at an early stage can hinder the growth of cancer cells in the bones. To achieve this, the early stages of the process must be investigated”. To understand processes of bone metastasis the researchers compared three types of bones from model mice:  healthy, early-stage metastasis, and advanced metastasis. They found that when bone metastasis begins, T cells from the immune system arrive on the scene and penetrate the metastases but are unable to destroy them. 

Prof. Neta Erez

Next, the researchers discovered that the killing activity of T cells is inhibited by another type of immune cells and identified the proteins responsible for this effect. To neutralize these inhibitory proteins and reactivate the T-cells, they created a novel therapeutic combination that has never been tried before a drug that counters the activity of the immune-inhibiting cells, along with an antibody that activates T cells. This combination was administered to model mice, and the results were encouraging: the bone metastases were reduced, and survival was significantly improved compared to untreated model mice. 

At the final stage of the study, the TAU research team collaborated with the Sheba and Ichilov (Tel Aviv) Medical Centers and the Baylor College of Medicine in Texas. They examined tissue samples from bone metastases taken from patients with breast cancer, as well as other types of cancer, and found that the immune cells inhibiting T cells express the same proteins as those found in the animal model. Prof. Erez: “Our findings suggest that the combined treatment – attacking the cells that inhibit T cells while activating the T cells – can be effective for treating bone metastasis resulting from breast cancer as well as other types of cancer. The great advantage of our strategy is that both drugs are already available on the market and consequently, the process of obtaining permits to use them against bone metastasis in humans can be relatively short. At the same time, clinical trials need to verify the effectiveness of the new therapeutic strategy”.

The study was funded by the Israel Cancer Research Fund (ICRF), the Israel Science Foundation (ISF), Worldwide Cancer Research (WWCR), and the U.S. Department of Defense (DoD).

Related posts

What Happens When the Brain Learns Two Behaviors at Once?

29 December 2024

GPS for Cancer: Directing Drugs to the Tumor

23 December 2024

Is Treatment for Genetic Autism on the Horizon?

25 November 2024

Nasal Spray Revolutionizes COVID Protection

21 November 2024

Is There a Way to Stop Parkinson’s Disease at Its Source?

14 November 2024

How Does the Brain Keep Calm?

14 November 2024

Hyperbaric Oxygen Therapy: A Promising Treatment for PTSD Symptoms

11 November 2024

TAU Breakthrough Reveals Mechanism That Eliminates Tumors

3 November 2024

Could Cancer Vulnerabilities Be Hidden in Chromosome Changes?

23 September 2024

Spotting Parkinson’s Early: A New TAU Breakthrough

17 September 2024

How Can We See Through Closed Eyes?

16 September 2024

Can Parkinson’s Treatment be Enhanced by AI Tech?

1 September 2024

Want to Fall in Love? Step Outside in The Sun

19 August 2024

Can Smartwatches Prevent Pandemic Outbreaks?

7 August 2024

How Close Are We to Thought-Based Communication?

22 July 2024

Will Wearable Tech Transform Neurological Diagnosis?

21 July 2024

Victoria

Tok Corporate Centre, Level 1,
459 Toorak Road, Toorak VIC 3142
Phone: +61 3 9296 2065
Email: [email protected]

New South Wales

Level 22, Westfield Tower 2, 101 Grafton Street, Bondi Junction NSW 2022
Phone: +61 418 465 556
Email: [email protected]

Western Australia

P O Box 36, Claremont,
WA  6010
Phone: :+61 411 223 550
Email: [email protected]